
CIGAR: Application Partitioning for a

CPU/Coprocessor Architecture

John H. Kelm∗ , Isaac Gelado† , Mark J. Murphy∗ , Nacho Navarro† ,

Steve Lumetta∗ , Wen-mei Hwu∗

*Center for Reliable and

High-Performance Computing

University of Illinois at Urbana-Champaign

† Computer Architecture Department

Universitat Politecnica de Catalunya (UPC)

2

Application Partitioning for a

CPU/coprocessor Architecture

Software

Application

Determine

Application

Partitioning Coprocessor

Development

Data Layout and

Communication Design

Application Modification

Sequential Sequential

CodeCode

3

Introduction

� Context for CIGAR

− Applications with data parallelism prevalent

− Opportunities for data-parallel coprocessors

− Partitioning sequential apps/data is difficult

� The CIGAR three-tiered (holistic) approach:

1. Extend the machine model

2. Provide a partitioning Methodology

3. Allow fast Prototyping

4

Outline

� Introduction

� Coprocessor landscape and current issues

� Extend: Data structure hosting and CUBA

� Methodology: CIGAR, a methodology for mapping

applications into CUBA

� Prototyping: Rapid debug/development platform

� Conclusions

5

CPU/Coprocessor Design Issues

Today
� Why extend the machine model?

− High communication overhead

� Why develop a methodology?

− Developers rewrite/modify sequential apps

− Inconsistencies between code and design process:

CPU-only vs. CPU/coprocessor code

− Discovering code/data to map to coprocessor difficult

� Why build a prototyping platform?

− Late evaluation of correctness

− Visibility and speed for debugging

6

Cray XD1 (FPGA), NVIDIA

G80 (GPU), Ageia’s PhysX

(Physics Processor)

x87 (FPU), Intel’s MMX

(multimedia), SSEx

(SIMD), Stretch

(reconfigurable)

Examples:

External deviceEmbedded in CPUsLocation:

Complex functions

(e.g., Motion Estimation)

Primitive operations

(e.g., SIMD FMAC)

Execution:

DMA/MMIO, Large,

persistent datasets

Registers, small datasets,

data not persistent

Input/Output:

Coarse-grained

Coprocessors

Fine-grained

Accelerators

Coprocessor Taxonomy

7

Data Transmission
� Communication cost critical

� Data marshalling:
1. Select

2. Aggregate

3. Transfer

� Data layout

� Asymmetric access latency

� Goals:
− Remove need to marshal data

− Low-latency access for both
CPU and coprocessor

struct grad_student {
struct person *next;
string name;
u8 age;
...
u8 salary;
u64 hours;

}

...

Coprocessor

Local Memory

...

Find, select, copy, repeat…

System

Memory

1. Extend 2. Methodology 3. Prototyping

8

Data Structure Hosting

Problem:Want to Avoid…

− Marshalling data

− Changing code

− Remapping pointers

− Modifying data layout

Solution: Data Structure Hosting

− Only one (persistent) copy

− Allocate whole structure in

coprocessor local memory

− Same data layout for app

Coprocessor

Local Memory

Application

Virtual Memory

System

Physical Memory

Other Data

Unmodified

Logical Data

Layout

Actual Physical

Data Layout

1. Extend 2. Methodology 3. Prototyping

9

Data Structure Hosting

Coprocessor

Local Memory

Application

Virtual Memory

System

Physical Memory

Other Data

Unmodified

Logical Data

Layout

Actual Physical

Data Layout

1. Extend 2. Methodology 3. Prototyping

�Consistent view of data
structures

�Not a replacement
programming model

� Enables low-latency access
for CPU and coprocessor

�Tradeoff: Simpler,
consistent machine
abstraction vs. memory
efficiency

10

Parameter Passing Semantics
� Pass-by-value (marshalling)

− Data copied (explicitly): Application � Coprocessor

− Coprocessor has private copy

− Data not persistent

� Pass-by-reference (no marshalling)

− Coprocessor has reference to data (offset, pointer, etc.)
with updates in-place

− Data accessible by both CPU and coprocessor

− Data built piecemeal, persists

� Extend coprocessor models: Add pass-by-reference

1. Extend 2. Methodology 3. Prototyping

11

Data Persistence

Data persists in

Coprocessor Local Memory

Producer� Consumer:

� Not immediate

� May not be regular

CPU Coprocessor

T
im

e
T
im

e ��

CPU Coprocessor

12

CPU/Coprocessor Architecture

Techniques based on mapping apps to

CUBA CPU/coprocessor architecture

Attributes include:

−Coprocessor local memory hosts data

−Coprocessor local memory cacheable
by CPU (unlike MMIO)

−Low-latency for both CPU and
coprocessor

−Coprocessor memory not kept coherent
(software managed coherence)

General-Purpose

CPU

Coprocessor(s)

Local Memory

L2 D-Cache
System

Memory

1. Extend 2. Methodology 3. Prototyping

⊗⊗⊗⊗⊗⊗⊗⊗

13

Where Does CIGAR Fit In?

� Sequential code � CUBA

� Aid developers partitioning sequential apps using

visualization techniques

� Discover persistent state + appropriate code regions;

map to data-parallel coprocessor with hosting

� Provide platform for prototyping partitioned designs

� Bottom line: More easily create correct mappings

using fast emulation

1. Extend 2. Methodology 3. Prototyping

14

Rapid Prototyping

Emulation Platform

CIGAR Methodology: Analysis

Software

Application

Application

Partitioning

Functional

Description of

Coprocessor

Map Data

Structures

Insert

Coprocessor

Stub

GeneralGeneral--PurposePurpose

ProcessorProcessor

SoftcoreSoftcore

ProcessorProcessor

Software Modification

Data Structure Mapping

Coprocessor Development

Application

Profiling

Compile to

Softcore CPU

Compile to

CPU

CoprocessorCoprocessor

Local MemoryLocal Memory

1. Extend 2. Methodology 3. Prototyping

15

Rapid Prototyping

Emulation Platform

CIGAR Methodology: Partitioning

Software

Application

Application

Partitioning

Functional

Description of

Coprocessor

Map Data

Structures

Insert

Coprocessor

Stub

GeneralGeneral--PurposePurpose

ProcessorProcessor

SoftcoreSoftcore

ProcessorProcessor

Software Modification

Data Structure Mapping

Coprocessor Development

Application

Profiling

Compile to

Softcore CPU

Compile to

CPU

CoprocessorCoprocessor

Local MemoryLocal Memory

1. Extend 2. Methodology 3. Prototyping

16

Rapid Prototyping

Emulation Platform

CIGAR Methodology: Design/Debug

Software

Application

Application

Partitioning

Functional

Description of

Coprocessor

Map Data

Structures

Insert

Coprocessor

Stub

GeneralGeneral--

PurposePurpose

ProcessorProcessor

SoftcoreSoftcore

ProcessorProcessor

Software Modification

Data Structure Mapping

Coprocessor Development

Application

Profiling

Compile to

Softcore CPU

Compile to

CPU

CoprocessorCoprocessor

Local MemoryLocal Memory

1. Extend 2. Methodology 3. Prototyping

17

Pre-processing and Profiling

� Instrument source to provide hooks into CIGAR

� Profile apps to find comp. intense regions of code

� Filter out subroutines with little compute time,

accelerates subsequent steps

� Result: Candidate routines to investigate

1. Extend 2. Methodology 3. Prototyping

18

Data Parallelism Discovery

� Simple Metric: Analyze loops for data parallelism

� Method: Divide total number of instructions in trace

by calculated height of DFG

� Result: Regions of code that may be accelerated

with data-parallel coprocessors

� Drawback: Dynamic � Input dependent

1. Extend 2. Methodology 3. Prototyping

19

Access Intensity

� Correlation between data structure access and candidate functions

� Visualization aids developer in making appropriate mapping

� Demonstrates: Need low-latency for CPU and coprocessor

Function

Execution

Intervals

(From 462.libquantum)

Candidate

Functions

Hosted Data

Structures

1. Extend 2. Methodology 3. Prototyping

Accelerator AccessAccelerator Access Accelerator AccessAccelerator Access

CPU AccessCPU Access

Instruction Numbers (Time) ����

20

Liveness Analysis

� With no backing-store, CLM state must be saved between

remap or reallocation (expensive operation)

� Find intervals where hosted data structures dead

� Drawback: Need to hand verify correctness

Candidate

Functions

Hosted Data

Structures

1. Extend 2. Methodology 3. Prototyping

(From 456.hmmer) Instruction Numbers (Time) ����

21

Emulation Platform

� Softcore processor for emulating coprocessor

� Local memory of coprocessor exposed

− Same interface exported by actual coprocessor

− Work out interface and ensure proper remapping

� Separates coprocessor function from implementation

� Iterate through designs quickly by avoiding:

− High-level synthesis

− Writing RTL

− Place-and-route for FPGA designs

− Waiting for silicon before software integration

1. Extend 2. Methodology 3. Prototyping

22

Emulation Platform Implementation

Supports standard compilers (gcc),

debuggers (gdb), and

performance monitors (gprof)

Data structures mapped in stages

Debug using standard practices

Evaluate many functionally

different coprocessors quickly

General-

Purpose CPU

Softcore

Processor

Coprocessor

Local Memory

L2 D-Cache
System

Memory

Interface to

application

is consistent

1. Extend 2. Methodology 3. Prototyping

Emulate:

GPU, ASIC,

FPGA, etc.

23

Simulation vs. Emulation

• Simulation
⊕High visibility

⊗Long runtime

⊗Left to debug the simulator

• Emulation
⊕Orders of magnitude better than simulation

⊕ Stable platform: CPU and coprocessor local memory fixed

⊕More visibility vs. native

⊗Cannot evaluate performance directly

3151 x1180 x2437 xSimulation

30 x73 x56 xEmulation

1 x (1m13s)1 x (0.10 s)1 x (0.30 s)Native

464.h264ref456.hmmer462.libquantum

1. Extend 2. Methodology 3. Prototyping

24

Summary
� Prevalence of data-parallel coprocessors

� Extend design techniques

� Extend architecture to avoid data marshaling +
reduce overhead

� CIGAR: Techniques for isolating and mapping
hosted data structures into CUBA

� Rapid prototyping platform

25

Conclusions

� Consistent view of resources (1. Extend)

� Visualizations + simple metrics (2. Methodology)

� Reduce difficulty prototyping/debug (3. Prototyping)

� Future work:

− Virtualization of coprocessor local memory

− More efficient memory usage/caching

�� TakeawayTakeaway: Map software to CPU/coprocessor by

extending tools and techniques software developers

understand

The End

Detailed View of CUBA

Execution Modes

� Baseline

− Block on coprocessor access

− Immediate polling

� Independent Execution Mode

− Concurrent CPU and coprocessor execution

− Defer polling

� Exception Handling Mode

− Begin executing on coprocessor

− On error, revert to CPU execution

− Simplify coprocessor design: Eliminate infrequent execution paths

Mapping Steps

1. Software-only Profile

� Collect information

� Determine initial partitioning

2. Software Memory Debug

� Move data structures to coprocessor local memory

� Software structure remains unchanged

3. Coprocessor Debug

� Add coprocessor to design

� Debug functional correctness

4. Coprocessor Profiling

� Evaluate quality of partitioning

Data Synchronization Granularity

• Patterns found in

benchmarks evaluated

• Impact on CPU/

Coprocessor architecture

• Use coprocessor data

structure hosting to

increase concurrency

