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ABSTRACT

In this work, a hybrid CPU/accelerator platform, which runs a standard operating system, is proto-
typed using an FPGA. The goal is to provide consistent, protected, low overhead interfaces for accelerator
developers to target. These interfaces enable software application developers to exploit the parallel pro-
cessing power of hardware accelerators and reconfigurable computing. Furthermore, we aim to decouple
the process of software development from accelerator design in a heterogeneous model of computation.

A switchable interconnect accelerator framework is developed to explore what resources should be
embedded in future CPU/accelerator systems. We mate our accelerator and application-level inter-
faces to provide a seamless platform for developing hardware accelerated applications. Complexity of
debugging and development using our framework is lowered by reducing the signal count by over 80%,
compared to a stand-alone accelerator design. A hardware accelerated JPEG encoding application serves
as a motivating example throughout this work.

A computation model is developed to allow standard applications running on our platform to ac-
cess reconfigurable accelerators. The applications access accelerators, synthesized in the FPGA fabric,
through an operating system layer. Applications running on the CPU interface with the accelerators
using a library call like interface. We have found that system call and data transfer overhead can be
well over 2000 cycles or made as low as 300 cycles for our example accelerators. Our model provides
protection, encapsulation, and resource virtualization. Using our prototype platform we implement parts
of our computation model and show the performance tradeoffs for four different access methods.
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CHAPTER 1

INTRODUCTION

Contemporary microprocessors, based on complex microarchitectures, are reaching power and per-
formance limits. At the same time, Moore’s law continues to provide more and more transistors to
architects. New methods must be developed for effectively exploiting the ever-increasing number of
transistors integrated on a single die. One method explored by manufacturers is to add more cores to
the same die. These manufacturers hope to bring to market a central processing unit (CPU) that has
higher performance. However, simply adding more cores may not meet desired power, cost, and per-
formance goals. Integrating reconfigurable hardware accelerators with general–purpose processor cores
provides a viable alternative.

Contemporary applications are often single–threaded and therefore are not targeted at multicore
architectures. Many desktop users are concurrently running only a small number of applications. Two-
and four-core architectures have been able to provide gains for such users; however performance barriers
will be reached as cores continue to multiply, while the number of programs run by a single user does
not. Furthermore, performance will not scale with the power consumption. The added cost, in terms
of power and price, of a whole second core on a single chip will not justify its limited utilization when
running single–threaded applications. As such, methods that result in more efficient use of the added
transistors must be developed.

The conventional microprocessor is adept at executing control-flow intensive code. The ability to
execute flexible programs at high clock frequencies, comes at the expense of execution units available.
Furthermore, the out-of-order superscalar processors must incur the cost of added die area dedicated to
elaborate caching and branch prediction logic. Moreover, applications that exhibit large degrees of data
parallelism are unnecessarily serialized on modern processors due to the limited number of functional
units available. Such applications have their data–parallel nature lost when mapped into machine-
readable binaries. The explicit parallel structure lost at compile time is only to be rediscovered by the
processors at runtime in an effort to keep execution slots full. Rediscovery of lost parallelism comes at a
great cost in terms of power consumption and die area. Data–parallel regions of code will benefit from
technologies that deviate from the strict control-flow driven processing paradigm and integrate flexible
dataflow computations using reconfigurable logic.

Application specific integrated circuits (ASIC) can be tailored to the needs of a single task providing
high performance, low cost, and high efficiency. However, the nonrecurring engineering (NRE) costs of
developing an ASIC and its application specific nature restrict its use. Due to these factors, ASICs
fail as a medium for providing the benefits of custom–tailored logic to a host of applications that run
on contemporary microprocessors. ASICs do find use as specific accelerators in the areas of video,
audio, and physics engines, but static accelerators do not allow for a general computation platform.
Reconfigurable hardware accelerators, based on field programmable gate array (FPGA) logic, can bridge
the gap between custom ASIC accelerator designs and the flexibility of general–purpose processors.

FPGA technology, based on lookup tables (LUT) built into configurable logic blocks (CLB), pro-
vides the medium for dynamically matching the resource needs of applications with available functional
units. FPGA avoids many of the NRE costs associated with ASIC technology, while also allowing for
application-specific accelerators to be added to processors postproduction. FPGA devices allow for a
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large number of data–parallel operations to be executed simultaneously, without the overhead of schedul-
ing and control logic. The overhead associated with control–driven processor architectures does and will
continue to thwart efforts to extract more performance from contemporary superscalar designs. The
data processing capabilities of FPGAs will be able to scale where single cores cannot, while doing so
more efficiently than multicore designs.

We advocate a hybrid model of conventional microprocessor cores coupled with reconfigurable hard-
ware accelerators, synthesized in an FPGA fabric. FPGAs provide a means to map the datapath of an
application into a custom generated piece of hardware. Reconfigurable accelerators, based on FPGA
technology, provide a means to exploit high levels of parallelism efficiently. They are able to do so by
obviating the need for power and area hungry cache hierarchies and control structures (e.g., branch
predictors). We have developed a test platform, using an FPGA with an embedded processor running a
standard GNU/Linux distribution, to demonstrate the CPU/accelerator model we develop.

Mapping applications into a hybrid CPU/accelerator system is nontrivial. Many possibilities exist
for accelerator access, mapping, resource allocation, and application interfacing. Without the necessary
infrastructure for integrating FPGA-based accelerators with common applications, a hybrid CPU/FPGA
platform will not be widely adopted. The focus of this work is to study a prototype of our hybrid
model [1] and implement interfaces to the reconfigurable accelerators that are designed such that they
become transparent to the application developer. The abstraction is made by encapsulating access
to the accelerators in library calls. Furthermore, this work provides infrastructure in the form of a
switchable interconnect framework for accelerator developers to target. Using our interface allows for
reduced complexity by providing more of the supporting control logic and reducing signal count by more
than 80% compared to a stand-alone accelerator. Moreover, the framework exports interfaces for the
accelerators and operating system layer we develop, allowing software developers to integrate accelerators
targeted at our platform in an easy and consistent fashion.

Current efforts for interfacing accelerators, reconfigurable or otherwise, with applications are not
flexible. Reconfigurable systems available commercially make static decisions based on fixed rules. The
rules for how data is transfered are codified in automatic code generation tools. Using the components
developed in this work, future reconfigurable platforms will be able to adapt to their environment when
accelerators are first accessed, or at runtime to changing conditions. Conditions that can change include
data rates of the applications, the varying workload, priorities of contemporaneously executing tasks, and
reconfigurable resource availability. We advocate pushing many of these scheduling decisions into the
operating system, while still exporting an interface that is familiar to software developers for accessing
accelerators. In doing so, the best choice of data transfer method and execution domain—hardware or
software and in what form—can be made for accelerated applications run on our platform dynamically.

Image compression provides many levels of parallel granularity that can be mapped into reconfig-
urable accelerators. We use Joint Photographic Experts Group (JPEG) image compression as a motivat-
ing example throughout. On top of our GNU/Linux based platform, we use Independent JPEG Group
(IJG) cjpeg [2] to demonstrate the capabilities of our interfaces and framework. We have accelerated
cjpeg by encapsulating portions of the code in library calls that interface with reconfigurable logic via
system calls made to the operating system. Multiple accelerator access implementations for JPEG are
studied in the context of the switchable interconnect network developed.

1.1 Contributions

We develop a model for CPU/accelerator execution and implement a prototype on an FPGA with
an embedded processor. Methods for integrating accelerators with the operating system and user ap-
plications are explored on our CPU/FPGA platform. We have developed an accelerator framework to
integrate accelerators into the system, providing a consistent hardware interface. We describe a possible
future model for computation integrating library call-like interfaces, the operating system, and shared
hardware accelerators. The model allows for virtualization of the hardware resource, enabling the system
to execute the accelerator tasks in hardware or software. An understanding of the tradeoffs inherent in
our accelerator access methods is developed.
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Figure 1.1 A possible future configuration of the reconfigurable interface with closer coupling.

The hybrid CPU/accelerator system, interfaces, and infrastructure developed are characterized.
Current systems do not make use of accelerators that are swapped in and out on-the-fly, nor do they try
to integrate the accelerators with applications and the operating system as presented here. The goal of
such characterization is to provide guidance to those interested in developing applications incorporating
hardware accelerators and accessing them using well-defined operating system and hardware interfaces.
Furthermore, this serves as a stepping stone on the path to realizing a hybrid CPU/accelerator system,
capable of outperforming contemporary computing platforms in terms of performance, cost, and power
efficiency.

1.2 Related Work

One of the difficulties in developing future reconfigurable architectures is the lack of a general
reconfigurable computer (RC) that can serve as a basis for ongoing work. However, there are systems
built around FPGA devices with embedded processors that serve as development platforms [3,4]. These
FPGA devices can be found in reconfigurable systems that can be integrated with a standard workstation
computer [5]. Furthermore, numerous research efforts have developed reconfigurable platforms that serve
as inspiration for this work [7–10].

We must first develop an understanding of the proximity of accelerators to the host processor,
and the implications for accelerators being located close to or far from the processor, before we begin
exploring other related reconfigurable platforms. In the context of this work, close coupling refers to the
low latency and high bandwidth of channels between host and client, where the two share some form
of high-speed connection. In our model, accelerators and the processor reside on the same die, such
as the system shown in Figure 1.1. Close coupling, as is discussed in terms of current research efforts,
often differs from the closeness of current commercial offerings. Research efforts have moved toward
integrating conventional and reconfigurable logic, with data sharing accomplished via registers or the
cache hierarchy, on the same die as the processor core. However, many commercial offerings are only
accessible via system buses.

Loosely coupled systems may exist on a peripheral bus (e.g., [5]), and may execute an entire appli-
cation locally, making little use of the host system. Such a model requires a compute-intense, latency-
insensitive operation to be identified and mapped into hardware to make effective use of the reconfigurable
substrate. We aim to take advantage of finer-grained accelerators by integrating them more closely with
the CPU.

Nearly all of the commercial examples have a host-client relationship, with the conventional micro-
processor serving as host to the FPGA-based system. The reconfigurable systems can be closely coupled
to the host by means of high-speed, dedicated links (e.g., HyperTransport) or by using an FPGA with an
embedded processor core to play host to the FPGA’s reconfigurable fabric (e.g., the Virtex-II Pro used
in our experiments). Few CPU/FPGA platforms have been empowered with operating systems, able to
support common user applications, that incorporate native accelerator support. A model is developed
in this work in which portions of applications running on the embedded processor are accelerated in the
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FPGA fabric. Doing so pushes reconfigurable computing past some of the limitations of current CPU
with coprocessor models, where only certain application domains are targeted and accelerated.

Stream-based computation is found in a wide variety of media applications and is the target of both
conventional and reconfigurable systems research. Efforts have focused on capturing the inherent paral-
lelism and data flow of streaming applications using new languages, while also trying to take advantage
of the functional unit needs of these applications using reconfigurable hardware accelerators. Languages
that assist the developer in mapping applications into parallel architectures are key to the widespread
acceptance of reconfigurable platforms, such as the CPU/accelerator model we develop. StreamIt [6] is
a language framework for developing stream-based applications that attempts to take advantage of the
parallelism inherent in streaming codes. Recent efforts [9, 10] in reconfigurable computing architecture
have focused on mapping applications to hardware resources, compiler initiatives to map applications to
the reconfigurable system, and a stream-based data model. We incorporate the stream-based model for
interaccelerator communication and as a model for application-to-accelerator mapping, but focus also on
adding protection, operating system interfaces, and providing a more general platform for reconfigurable
accelerator development.

Earlier projects [7, 8] had the goal of developing an optimized reconfigurable architecture where
accelerators are accessed at the instruction set architecture (ISA) level. Current soft-core platforms [11]
allow for accelerator access via specific instructions. Our application interface has the goal of developing
the infrastructure necessary to move research efforts forward without breaking compatibility. We do
so by encapsulating accelerator access in a library call-like interface. Our goal is to free the high-level
applications developers from many of the system interface issues present in contemporary accelerator
design.

Earlier work, such as [7, 12], integrated the accelerators into the processor pipeline with special
purpose instructions. It is the ultimate goal of this work to show that tighter coupling is necessary
to broaden the reach of reconfigurable hardware acceleration; however, the model posited by earlier
work, attempting to integrate accelerators into the processor pipeline, may be too close for optimal
acceleration. Furthermore, such tight coupling unnecessarily breaks compatibility with nonaccelerated
applications and requires CPU manufacturers to commit to accelerator integration at an early design
stage, possibly delaying the wider acceptance of a CPU/accelerator model.

The speed of memory access and the protection model employed are key to accelerator performance.
Earlier work [10] discusses isolating the accelerators from the system via a stream lookaside buffer. It is
the goal of this work to investigate finer-grained, but still protected, random and stream data accesses to
enable a more general model of computation for the reconfigurable accelerators. Other research efforts
have focused on the memory interface issues with respect to reconfigurable accelerators [13], but do
not fully investigate protection. Furthermore, independent accelerator access using the virtual address
space of applications has been explored in [14], but do not make use of finer-grained accelerators. No
single previous work has focused on all of the system level details concurrently, including access methods,
resource virtualization, and resource sharing.

Time multiplexing the reconfigurable substrate was explored in [15]. In their design, the reconfig-
urable resources are partitioned into regions that are occupied by pipeline stages. PipeRench serves as
an example of accelerator modules chained together, via a defined interface. The data flows from one
accelerator to the next—essentially pipelining—allowing for a small amount of reconfigurable fabric to
be shared among multiple accelerators that cannot all be made resident concurrently. One of the main
motivations for [10] is the ability to virtualize the hardware resources. Virtualization in that context
allows for mapping an arbitrarily sized, tiled reconfigurable hardware specification into the available re-
configurable tiles. Essentially, the DFG for the application is mapped into the hardware resources. Our
model assumes that the entire hardware application is resident in the FPGA fabric, but could use such
techniques to enable future hardware virtualization. Furthermore, [15] introduces, and [10] extends, the
idea of a staged execution in reconfigurable hardware with communication protocols between temporally
and spatially adjacent accelerators similar to the framework we develop.

The notion of giving hardware direct access to virtual memory is developed in [16, 17]. In [16], the
authors investigate the performance benefit of providing a network interface card with a translation unit
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capable of addressing virtual memory. The accesses to memory and the translation are independent of
the processor. Enabling physical-to-virtual address translation allows their method to provide direct
access to user space buffers. Providing direct access to internal device buffers relieves the processor
of doing unnecessary copies and managing additional buffers for devices. The model developed in [17]
provides low-latency access to network interfaces by providing direct mappings to I/O devices and
support for user-level direct memory access (DMA). In [17], the authors leverage user space I/O and
direct mappings to allow for low overhead message passing. The SHRIMP-I device is very similar to
the access methods developed here where data is accumulated and then explicitly sent by executing a
system call. Furthermore, current commercial offerings, such as Infiniband [18], allow for mapping device
resources directly into applications to provide low-latency access for data transfers.

In [14], the authors develop an embedded CPU plus FPGA coprocessor model. In their model, the
embedded CPU is running a general-purpose operating system. The goal of [14] is to provide a seamless
integration of coprocessors resident in the FPGA fabric with applications running on the embedded
processor. They achieve this goal by providing the coprocessors with access to the virtual address space
of the host application. A major difference between [14] and our work is how and when data is transfered
to the accelerators. Unlike [14], which always accesses memory, on behalf of the accelerators, across the
bus using their built-in translation mechanism every access, we use a variety of methods, not all of
which use our translation mechanism to access data, and we employ local buffering to reduce bus traffic.
Providing multiple access paths allows our model to meet the needs of a wider variety of applications by
hiding latencies due to data transfers and only providing protection and random access when needed.

In [19], the authors present a set of operating system and FPGA communication primitives for placing
hardware tasks on a reconfigurable substrate. Our work attempts to accelerate common applications
that would otherwise run on a general-purpose CPU using reconfigurable logic while still allowing those
applications to take advantage of the services provided by a standard operating system. On the other
hand, the model explored in [19] focuses on scheduling purely hardware tasks into the reconfigurable
logic. Furthermore, the model of [19] uses a separate CPU and FPGA platform whereas we have an
embedded CPU/FPGA model that allows for closer coupling and reduced overhead.

1.3 Example Applications

We have experience with a set of three sample applications: motion estimation, filtered backpro-
jection, and JPEG image compression. We survey these examples to provide the motivation for our
framework and the need for a consistent interface. Each of these examples has different buffering, data
transfer, control, and timing requirements. Each application exhibits varying levels of parallelism that
can be exploited by a hybrid CPU/accelerator system. To provide background for this thesis, we explore
our sample application, JPEG image compression, in greater depth.

1.3.1 JPEG compression

JPEG exhibits many levels of parallelism, from high levels of instruction level parallelism (ILP)
when processing a small portion of the image, medium-grained parallelism, or loop-level parallelism,
when doing the discrete cosine transform (DCT) and quantization stages, and coarse-grained parallelism
if the image compression is partitioned into multiple threads of execution. As most applications are
some mix of parallel and sequential execution, JPEG serves as a relevant example for its many levels
of parallelism, but also for its more sequential components such as run-length encoding and Huffman
coding phases.

The basic unit of computation for JPEG is the macroblock. A macroblock is an 8 x 8 pixels portion of
the image to be compressed. The phased behavior and data pipelining of macroblock computations allow
for exploration of data flow in the computation more easily than is possible in many other applications.

At a high level, as illustrated in Figure 1.2, JPEG encoding of a single image proceeds in the following
steps:
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Figure 1.2 The logical flow of an image being compressed into a JPEG.

1. Partition a bitmap (uncompressed) representation of the image into 8 x 8 macroblocks representing
64-pixel tiles. Each of these blocks is independent for a majority of the processing.

2. Convert the image into luminance and two chrominance channels (YUV representation).

3. Independently perform a 2D DCT on each of the 8 x 8 macroblocks, yielding 64 coefficient values.
The image is now in a frequency representation that is suitable for removing extraneous information
while minimizing perceived quality loss to a human observer.

4. Quantize the 8 x 8 matrix of coefficients using a quantizing table chosen such that high frequency
coefficients (i.e., those that are less noticeable to the human eye) are minimized. Quantization is
simply a per-element divide of the result matrix of DCT by a specially chosen table. The same table
can be used for each channel, a standard table can be chosen, or quantization values of all ones can
be chosen to provide lossless compression (of course rendering quantization an unnecessary stage).
The goal of quantization is to make as many as possible of the entries in the transformed matrix
become zero in preparation for the next stage.

5. The high number of zeros now present in the 8 x 8 block can be efficiently reduced in size using
run-length encoding (RLE). RLE is a sequential process as each block is run-length encoded in
order. Data is no longer in a tiled form and cannot be processed independently as was possible
earlier. However, more parallelism could be uncovered by partitioning RLE input and stitching
together the results.

6. Further compression is realized by taking the output data from RLE and applying Huffman coding
to it.

7. The image can now be wrapped in a JPEG header that combines the code table and quantize
tables (if necessary), completing the encoding.

Many of the details of the JPEG standard are glossed over, but the levels of parallelism should be
apparent. The contributions of all the major phases of JPEG encoding, in terms of processor cycles
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Figure 1.3 Portion of time spent in various parts of JPEG execution.

on a PowerPC processor, are depicted in Figure 1.3. The ILP is available due to how the macroblocks
are processed. The process-level parallelism (PLP) could be realized by having multiple threads of
execution with separate partitions of the image data and joining prior to the sequential stages. Exploiting
PLP, however, has the high overhead of process/thread creation. The LLP is available in each of the
steps (e.g., quantization and DCT) along with ILP. The flexibility of the standard and the number of
permutations of input parameters make implementation more difficult for a general version. For this
work, only the default compression quality setting for JPEG is chosen and studied, without loss of
generality.

1.3.2 Motion estimation

A motion estimation (ME) accelerator for use in H.263 video encoding was developed as a moti-
vating example for reconfigurable accelerators due to its inherent data parallelism. The accelerator was
developed for the Xilinx ML310 board with a Virtex-II Pro FPGA and was later ported to the XUP
platform used in this work. ME attempts to find the subframe of the previous full frame that most closely
matches the subframe in the current frame that is having motion estimation performed on it. ME must
be performed for each 16 x 16 pixel subframe of each frame of the video to be encoded. The execution
time of the accelerator is an order of magnitude better that contemporary x86 machines. However, if the
data movement overhead is considered, the accelerator is unable to provide such high levels of speedup.

The interface to the accelerator allows for easy hardware accelerator and accelerated application
development. The ME accelerator presents itself to the system organizationally as an embedded Block
RAM (BRAM) memory; architecturally as an address space mapped onto an auxiliary, single-master bus;
and, from the point of view of the system software, as a memory-mapped region to be issued standard
load and store instructions. However, this interface model does not fully utilize the interconnects and
support services provided by the PowerPC and FPGA. The hardware-accelerated version of the video
encoding application is unable to provide high levels of speedup on the XUP platform when compared
to a software-only version, run on the PPC core embedded in the FPGA.

Motion estimation serves as a node in the taxonomy of reconfigurable accelerators examined by
the level of parallel granularity they incorporate. Accelerating a full application, or an algorithm con-
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stituting the majority of the computation for the application, represents the most coarse-grained type
of accelerator. ME is one level more fine-grained in terms of parallelism as it is one part of a larger
application—in this case MPEG or H.263 video compression. Video encoding has a multitude of paral-
lelism that can be exploited using reconfigurable accelerators and is explored as a motivating example,
as both an application amenable to coarse granularity acceleration such as motion estimation and to
finer-grained, loop-level parallelism.

1.3.3 Filtered back-projection

At a very coarse-grain level, there is full application or algorithm acceleration. One example where
an entire algorithm constitutes the majority of the computation is filtered back-projection [20] (FBP).
The entire application considered is medical imaging, where a majority of the computation is performed
in a single section of the code. The algorithm for FBP is separated out and implemented in hardware.
FBP is a single-use accelerator and has little utility for application developers and therefore does not
lend itself well to a library-like interface. The FBP accelerator has high throughput requirements and is
latency insensitive. FBP provides an example of very coarse-grained acceleration and stands in contrast
to the work developed in this thesis where finer-grained accelerators are shown as a viable component
of future computing systems.
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CHAPTER 2

COMPUTATION MODELS

In this section a model for computation in a hybrid CPU/accelerator platform is developed. A
model that considers all possible combinations of implementations and interfaces exacerbates the dif-
ficulty of the mapping process. A fundamental issue for such a hybrid system is that the mapping
between software defined algorithms and low-level hardware constructs can be a daunting task. Without
a strict protocol for accelerator-to-application interaction, programmers cannot be certain that their
applications will remain correct across platforms or versions. Where data exist, what entities own
those data, and when the ownership of those data is transfered between entities are all key concerns
in a multiprogramming environment. A restricted view of the reconfigurable system, with many of the
architecture-specific interactions abstracted away, facilitates an environment appropriate for developing
reconfigurable accelerators and corresponding applications. The set of interfaces provided by this work,
coupled with the interaction models explored in this chapter, provides the infrastructure necessary for a
hybrid CPU/accelerator computing model.

The stream-based computation model [21] for reconfigurable systems and FPGAs as a platform for
building dataflow architectures [22] influence the accelerator framework and interaction models we de-
velop. Independent of reconfigurable computing, dataflow machines have been studied extensively [23].
Although dataflow architectures showed promise in certain application domains, they were unsuccessful
in attaining wide acceptance. Many of the techniques developed for dataflow can be mapped into our
model, including programming language support [24]. In our model, data dependence information repre-
senting the data flow in accelerated applications is coupled with the logical data movement mechanisms
provided by streams, for data transfer between applications and the operating system. Furthermore,
the interaccelerator communication mechanism is streamlike, but extends that model by also providing
mechanisms to stall computation and to randomly access memory when needed.

Hardware-software codesign has long been an interest of researchers [25]. Mapping an application
into our hybrid model requires parts of it to run in software on the embedded CPU and parts to run in
hardware as accelerators. Our contributions do not solve how one decides what part of an application
should be placed in either domain. However, before guided hardware-software partitioning can take
place, many architectural specifications to enable codesign must be defined for a CPU/accelerator hybrid
computing environment including: coherence between the memory of the accelerators, CPU caches, and
system memory; consistency models for ordering of accesses to different locations in the same data set
shared by both CPU and accelerator; and lastly, the necessary control semantics and dataflow used within
the reconfigurable accelerator framework. With codesign requirements in mind, we develop a model to
assist developers in partitioning their applications across the CPU and the accelerator framework we
develop.

Certain program codes exhibit a high degree of data parallelism, and are therefore more able to
exploit the spatial computation abilities of hardware accelerators. Our model can provide better scala-
bility for data-parallel applications than simply making wider execution core processors. We are able to
provide better scaling by maintaining and exploiting the otherwise lost data parallelism present in many
codes. A CPU/accelerator system removes the memory bottleneck associated with the load-store archi-
tecture found in general-purpose processors. The wide array of memory available in FPGA architectures
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including distributed memories, look up tables (LUT), BRAMs, and large off-chip bandwidth to static
random access memory (SRAM) and synchronous dynamic random access memory (SDRAM), allows
for the constricted, single path to system memory present in conventional microprocessors to be avoided.
Furthermore, FPGA-based accelerators allow for arbitrary composition of execution units, memory, and
interconnects that are custom tailored to the current computation. The flexibility of FPGA-based ac-
celerators, and their application-specific nature, helps to address the claims of inefficiency leveled at
stand-alone dataflow architectures.

We introduce an application-to-accelerator data transfer and execution model for developing ap-
plications using our interfaces and accelerator framework. The models developed provide the means
to systematically map applications, straddling both the software and hardware domains, into our plat-
form. The presence of concurrent execution in both software and hardware complicates the process of
hardware-software partitioning. Our computation model aims to reduce the complexity of developing
concurrent hardware and software applications by providing simple, consistent interfaces for integrating
accelerators and software applications. This chapter examines the fundamental application interface
model and system structure underpinning our CPU/accelerator hybrid computing platform.

2.1 Application Partitioning

Determining what parts of an application should be synthesized in hardware and those suitable for
software execution is an area of research know as software-hardware codesign. The codesign process
consists of using some means to map parts of an application into, possibly many, hardware units while
other parts remain in software, running on the host processor or processors. The designer must optimize
over the conflicting domains of power, area, and performance. The computing model presented in this
chapter is aimed at applications predominately run on the embedded processor. We do not try to solve
the hardware-software codesign problem, but instead to provide the infrastructure necessary to enable
guided application partitioning, and to ease software/hardware interfacing, by encapsulation of the
hardware units, or accelerators in our model, inside library calls. We partition JPEG image encoding
across both hardware accelerators and the embedded processor as a case study in hardware-software
codesign for a CPU/accelerator platform.

Frameworks exist for developing applications targeted at heterogeneous environments [26, 27]. De-
sign space exploration and design frameworks are able to assist developers in reaching their system-level
design goals through modeling and analysis. Rapid system space exploration allows for myriad design
choices to be analyzed and the optimal or near-optimal selected. Before such tools can become a utility
for designers who wish to target our hybrid CPU/accelerator platform, the model we espouse must be
throughly understood. We characterize different access methods and data transfer modes that can be in-
corporated into such system space exploration frameworks, to enable accurate modeling of heterogeneous
system designs that incorporate accelerators.

It may not be necessary to use extensive design space exploration to achieve desired performance
goals. Developers may understand their applications well enough to pinpoint which sections of code
would be best mapped to reconfigurable accelerators. Insight into how best to partition the application
can be gained empirically through profiling and timing measurements taken on a full software version
of the application. Furthermore, studying the data flow graphs (DFG) and control flow graphs (CFG)
provides better resolution for understanding what parts of the application have the data movement
and processing patterns amenable to FPGA acceleration. As compute intensive, data-parallel regions
are found, they can be mapped into accelerators. In the future, common routines will be available as
libraries, which can be loaded at runtime, and are easily accessed by developers.

Software analysis tools and methods are already well understood by software developers who seek
highly optimized code. Therefore, it is possible for software developers to partition applications, de-
veloping a portion of the code for CPU execution, and isolating regions for implementation as a set of
accelerators that the developers can integrate into their design as hardware modules. Using this par-
tition flow reduces the number of new tools developers must learn, easing the transition to our hybrid
CPU/accelerator model.
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The application developer does not need to be concerned with designing a functional block in a
hardware description language (HDL) in our model. Many common components would already be
available in a stock library. Likewise, hardware developers could build highly tuned accelerators for
commonly used functions just as there are standard synthesis macrocells for ASIC design and IP libraries
available today. By providing a framework that remains consistent across all domains, the accelerators
need only be developed once and can be accessed by any application developer running our platform.

Should areas of code be identified as candidates for acceleration, and suitable off-the-shelf library
components are not available, the software developer can hand off the task of accelerator design to a
hardware developer. The interfaces our platform provides allow for these two tasks, software application
development and hardware accelerator design, to be mostly decoupled. The well-defined abstraction
layer provides the software and hardware developers with the communication interfaces necessary to
design their components in isolation, decoupling one design process from the other. The applications
developers and the accelerator designers need only understand the data flow and data representations
that are transfered between the two domains using the abstraction layer provided by our model.

Custom accelerators for applications targeted at our hybrid model provide optimal results. In the
future it may be possible to develop tools, such as profiling compilers with integrated, high-level language
synthesis capabilities, that take arbitrary C code and map it into our platform without any additional
input from the developer. However, it is possible to realize there are a common set of tools that have been
in programmers’ repertoires for many years, such as the standard C library. Using such an approach,
accelerators can be distributed as hardware/software libraries and incorporated into designs without the
complexity of using such automatic code generation tools. Furthermore, in certain domains there are oft
used algorithms that are taken off the shelf when a new application is developed. Examples of recurring
algorithms include transform methods and filters for DSP applications. Combining the notion of code
reuse with the need for defined interfaces for reconfigurable systems results in the library call interface
model that we present.

The “accelerator as a library call” interface method we have developed for our heterogeneous system
lends itself to programming with recurring functional blocks. Just as sine (sin()) is part of the stan-
dard C library, we advocate adding a set of hardware accelerator libraries to enhance the performance of
commonly used library calls. Hardware accelerator-based libraries promote the same code reuse patterns
seen in software design today. Not all procedures wrapped as library calls found in standard libraries
today would be mapped into accelerators, but many could be. Furthermore, by incorporating hardware
and software versions of the accelerator into the library, source-level compatibility is maintained. Dy-
namically linked accelerator libraries that also include software implementations allow for binary-level
compatibility by enabling platforms that lack accelerators to still run the same executables, while those
that have the necessary hardware resources can take advantage of faster, more efficient accelerators.
The key point is that regardless of the implementation method, the basic application interface remains
consistent to the application developer across implementations since the call made has similar (or the
same) syntax and semantics as any other library call.

Portability is maintained as both the software and hardware versions of the procedure coexist in
the library object file, with the operating system mapping the appropriate version at runtime. A more
subtle portability issue is performance degradation and semantic differences between platforms. We have
isolated application development and accelerator development from the system, allowing for optimization
for their respective interfaces. Taking advantage of evolving hardware platforms is a valid concern
explored in previous work such as [10], but is not examined further here.

2.2 Operating System Layer

Our model sets the stage for future work to explore operating systems integrating hardware ac-
celerators, capable of making runtime decisions regarding scheduling and resource allocation. In our
model, the operating system is used as an abstraction layer to provide protection between accelerators
and surrounding hardware in the system. Furthermore, the operating system provides protection and
isolation between users accessing accelerators. The operating system manipulates logical streams of data
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Figure 2.1 Access model with logical streams.

blocks that are then moved to the accelerator using the concept of a transaction. Each data block is then
allowed to stream through the accelerators. The operating system layer for reconfigurable accelerators
provides the “glue” necessary for joining the application compute model, using a DLL approach, to the
accelerator compute model of streaming dataflow execution.

A great deal of flexibility exists in how the operating system layer is implemented and many avenues
for future work exist. Discussion of the complete compute model is discussed in this section while the
details of our implementation of a subset of our model is left to a later chapter.

2.2.1 Overview: Operating system layer

Operating system integration is the cornerstone of our model for future CPU/accelerator hybrid
computing systems. The model provides interfaces to the applications and to the accelerators. The
intermediate layer, encapsulated in the operating system, handles the mapping of user requests to ac-
celerator resources. Figure 2.1 shows a high level view of how an application accesses the accelerator
framework in our computation model. The application begins accelerator access by setting up a user
output buffer, and a user input buffer and filling that buffer, which is mapped into its virtual address
space (1), with the data to be sent to the accelerator. The application has no knowledge of where this
virtual address range is physically mapped. Once all the data is ready for the accelerator, the user space
application passes control over to the operating system through a system call (2). At this point, the
operating system is given the user input buffer by the user and the location of the user output buffer
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for the results from accelerator execution. The operating system marks the user output buffer region as
inaccessible by the application (3) to allow the application and accelerator to run concurrently, but to
halt the application should it attempt to access data before it is ready.

The operating system is now in control of the user’s data and must decide whether to execute the
requested accelerator library function in software or hardware. The accelerator may be busy, or the
application may have extinguished its resource allocation for the given time interval. The operating
system buffers the input data logically in a stream. A logical stream connects an application to an
accelerator. Once the data is recorded and buffers locked appropriately, the system call can return
allowing the application to continue running while the accelerators in our framework execute. The
application can continue to add stream entries into the logical stream by making repeated calls to the
accelerator library.

The operating system continually tracks system behavior and records statistics. These statistics,
when combined with system policy, are used to determine when and how to execute the data present
in the logical input streams (4). The operating system scheduler will eventually allow a data block
to be moved from the logical input stream entries into the accelerator (5) to begin execution. The
accelerators are then allowed to execute (6), consuming the input data from the application. The results
are eventually placed back in the output buffer and the presence of the data is made known to the system
(7). The application will eventually access the results yielding one of two outcomes: (a) the data are
not yet ready, and the access traps to the operating system, or (b) the accelerator has completed, the
data is available, and execution continues as normal for the application.

2.2.2 Scheduler integration

A multitasking operating system has the responsibility of providing fair resource allocation, meeting
execution deadlines for real-time processes, and delivering on quality of service (QoS) requirements for
its users. In our platform, each process is allowed to execute in a time multiplexed fashion, while
respecting a set of administrator-defined priorities. Hardware resources are partition based on a similar
priority scheme. The goal is to provide an environment where many applications can run without
any single application taking more than its share of the resources as dictated by policy set by the
administrator of the machine. The need to enforce system policy and resource limits using the accelerator
and reconfigurable resources in our system is no different.

To accommodate the requirements of reconfigurable accelerators, the base scheduling model must be
extended. To that end, the operating system must provide “fair” allocation of accelerator resources to
applications requesting access to the accelerators. Resource allocation must take into account accelerator
utilization, reconfiguration overhead, buffering requirements, and system policy in determining a fair
allocation schedule. Reconfiguration time and area allocation could be compared with the gain in
performance provided by hardware accelerators. Moreover, our platform can avoid reconfiguration by
having multiple, smaller parts of independent applications resident in the accelerator as depicted in
Figure 2.2. With multiple applications using the same framework concurrently, the scheduler need only
switch between them on context switches and avoids costly runtime reconfiguration.

Previous work studied scheduling of hardware accelerators mapped into reconfigurable systems.
These works focus on a slightly different accelerator access model than what is developed in this thesis.
They are focused on reconfigurable platforms in which the majority of the application is implemented in
hardware or do not consider the interface between the applications running on the CPU and the execution
kernels running in the reconfigurable fabric. However, these previous works provide insight into what
considerations must be made when developing scheduling algorithms for reconfigurable systems.

Other fully dynamic allocation methods in [28] proved to have high overhead. However, the system
model for reconfiguration required many more decisions to be made regarding accelerator placement
than we consider, resulting in added computation at the end of each reconfiguration epoch. In [29], the
author reexamines the same platform and develops a quasi-static method for scheduling. The quasi-
static method generates a schedule statically and then allows it to adapt at runtime, providing reduced
overhead, while maintaining many benefits of dynamic scheduling. In a more recent effort, runtime
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Figure 2.2 Loop bodies can be mapped into reconfigurable blocks and time multiplexed.

allocation of reconfigurable resources, with both software and hardware implementations available in a
library, is explored in [30]. The authors use a multiconstraint knapsack algorithm to determine the best
division of resources between hardware and software.

For our model, runtime statistics are kept, similar to the scoreboard used in [30], and analyzed by
the operating system. Using these statistics, the operating system varies the access method based on
system policy and the parameters developed in this work. Reconfiguration decisions would be based
on the runtime requirements of the system and system policy. The reduced complexity of scheduling
decisions in our platform may allow for fully dynamic scheduling, but depending on usage patterns,
statically placed hints may be necessary to allow for fast convergence of resource allocation.

2.2.3 Stream model maintenance

Streaming as a general model for computation breaks down for applications that make use of even
a moderate amount of control-flow or require a large number of random accesses to memory. For data
parallel computations mapped into hardware accelerators, streaming may be a fitting model. However,
models that allow for streams into and between reconfigurable blocks need to account for buffering
due to rate mismatch and nonresident hardware. Our model removes the burden of internal buffer
management by using an interaccelerator communication protocol that does give the accelerators a
notion of unbounded external buffers. Furthermore, transactions with the accelerator framework are run
to completion—there is no interleaving of accesses to the accelerators. Our concept of a logical stream
consists of multiple transactions, only one of which is allowed access to the accelerators at a time. The
data block from a single transaction is then allowed to stream through the accelerators.

In pushing the level of atomicity and the need to manage buffers up to the software/hardware inter-
face, application-to-accelerator streams need not be managed by the hardware accelerator framework.
However, many of the applications that will make use of reconfigurable accelerators have streaming data.
Not using any notion of streams and forcing accelerator calls to block on every access leads to reduced
concurrency, degrading performance. Process swapping, even when multiple processes are runnable, may
not be a viable option as the cost of context switching negates accelerator benefits. A method where
streams can be built to accept data from applications and buffer results is necessary to avoid time wasted
blocking. For full utilization of both the CPU and FPGA resources in our model, data must be accepted
from the user and processed concurrently with CPU operation.

We build a logical stream between applications and the accelerators into the operating system layer
of our computation model. If streams were built into the accelerator framework, the fact that buffer
management in FPGA hardware is difficult due to placement and routing constraints would become a
severe limitation. General-purpose processors have developed highly efficient memory hierarchies. The
operating system running on the CPU is able to dynamically reallocate buffers for running processes on
the fly, using the mature paging facilities of contemporary CPUs. The interface between the accelerator
and the application is a fitting place to insert the notion of a stream. Each application-to-accelerator
input mapping is abstracted via a stream. When an application passes data to the operating system
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during an accelerator call, that data is placed in the corresponding stream. The application is then able
to continue running immediately using nonblocking call semantics.

Input streams to the accelerator enforce in-order execution of data blocks for a given application-
to-accelerator mapping. However, the application may not access the results in the same order that the
corresponding input was produced. Our model allows access to results without undue delay by having
the operating system place results in independent buffers. Doing so enables the application to access
any data that is available without having to respect ordering, further increasing the flexibility of the
model. Access to the output buffers is handled similar to presence bits found in dataflow machines. The
presence bits are realized by exploiting the memory translation and protection facilities of the CPU.

The logical streams that exist between applications and accelerators are a powerful abstraction.
The access models presented in this work, along with other possible interconnection and system access
methods, can be mapped in such a way that data elements (1) come out of the logical input streams, (2)
are written to the framework input buffer, (3) are processed, and (4) are then written into the logical
output buffer for the accelerator-to-application mapping. The logical mapping can be a direct mapping
between the application’s virtual address space and the physical address space of the framework’s input
buffer. Should another application have the framework mapped, the operating system could place
the application’s input data into the stream buffered in system memory. The operating system could
then process the data in the logical stream when it allocates accelerator access to the application or the
operating system is able to process the data using a software thread, virtualizing the accelerator resource
as needed.

There are other implementation-level benefits for accelerator resource management and allocation
integrated into the operating system. The buffers present in our model are generated using a finite, shared
resource (i.e., system memory). The software application has the illusion of infinite buffers, but the
operating system cannot allocate even large, finite buffers for the application when available memory is
low. Should an application exhaust its resource allocation, the operating system must block the execution
of an accelerator call. All accesses to the accelerators go through a system call, providing normally
nonblocking semantics for increased concurrency, but may block, if necessary, without impacting the
programming model. At these well-defined points, the operating system can disallow further buffer
resource allocation to the application until software virtualized or physical hardware accelerators are
able to process some of the process’ associated data resident in its streams. A system call interface thus
provides protection and resource management, at well-defined points in the execution of accelerated
applications, using our model.

Nonblocking call semantics lead to asynchronous execution of the application partitioned across
the CPU and accelerator. Our model must handle the case where the application tries to access the
output of the accelerated call before the results are ready. If the application is forced to make system
calls on every data access, the overhead would negate any performance gained by using reconfigurable
accelerators. If blocking call semantics are allowed for accelerator access, then the call could put the
process to sleep until all the data are ready. However, such a model ruins concurrency in applications
that have data available to be processed, but do not need the results of the pending call they are blocking
on immediately. To handle this case, we logically tag each output buffer with a presence bit. Our model
makes the output buffers unreadable until the data is available using the memory management facilities
of the CPU. As a simple means to provide these capabilities, the framework can manipulate the page
table entries corresponding to the buffers when data is written. If the application tries to access data
early, it will cause an exception which will cause the operating system to put the application to sleep
until a time when the data is ready.

The performance implications of using page table management to avoid premature data access
without hardware support can be immense. Having tagged translation lookaside buffer (TLB) entries
that can be injected into the TLB when a change is required mitigates the cost of flushing the TLB
on every page table change (i.e., accelerator output buffer presence being set or cleared). Keeping the
TLB consistent with the accelerator subsystem through TLB injection, as opposed to using flushing as a
means to ensure consistency, allows our model to only suffer performance degradation in the (hopefully)
less common case, where the application attempts to prematurely access data. A TLB miss could take
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hundreds of cycles or more in a software managed TLB architecture. A means to avoid the TLB overhead
must be provided if page table entries and their respective entries in the TLB are going to be used as a
means to guard against premature data access.

The tricky issue of stream management has been pushed to a level inside our model, the operating
system layer, that can provide buffer management effectively. In our model, the operating system is
in control of resource allocation and accelerator management. The system call and library interface
method provides the necessary abstraction to allow the operating system to allocate reconfigurable
resources fairly while remaining transparent to the application. One down side to this method is a
restriction on how the accelerators can be accessed. For applications that are inherently streaming or
those amenable to some form of data structure windowing, a streaming model provides the necessary
flexibility. For some workloads, the stream model may be too restrictive to fully exploit the encapsulated
accelerators. In such situations, other means must be used to access accelerators should performance
be the only concern, but our model is still be capable of providing correct execution and a consistent
interface.

Streams offer a natural model for expressing the independent blocks of data sent to the accelerators
by many inherently parallel applications. Having only a limited number of accelerators, but numerous
applications trying to access said accelerators, requires some form of buffer management. Our model
is able to handle the many-to-few mapping situation by providing streams for each application-to-
accelerator mapping and output buffers that block computation until data is ready. The abstraction
provided by the streaming model we have incorporated into our hybrid system also enables seamless
virtualization of the hardware accelerators: whether the accessor is software or hardware, as long as
the rules governing the input and output buffers are respected, the application has no concern for how
that data is processed. Using our model, concurrency is maximized, protection is ensured, and resource
sharing is implemented efficiently.

2.2.4 Accelerator virtualization

A goal for future operating systems based on this work is full accelerator virtualization. Virtualiza-
tion refers to the ability to execute a hardware-accelerated kernel of an application in software should
some condition exist not allowing for execution in the reconfigurable fabric. The way in which the ap-
plication developer accesses the accelerators remains functionally unchanged when virtualization takes
place. Furthermore, protection models and protection boundaries when accessing the library must be
maintained in both the virtualized version running on the CPU and the accelerated version running on
the FPGA.

Virtualization has many benefits including added concurrency, backward and forward compatibility
when well-defined semantics are defined and obeyed by the developer, partial hardware acceleration,
priority-based resource sharing, and a consistent interface for application developers. There are two
features of the switchable interconnect accelerator framework interface our computing model targets
that enable virtualization. The first is through operating system management of users’ access to the
framework. The second is the explicit operating system-to-user level transfers that define transaction
boundaries.

One issue often overlooked by reconfigurable systems embedded in applications is the execution
cycles wasted during a blocking call to a hardware accelerator. In [7], the semantics of a call to the
reconfigurable resource dictate blocking calls and thus limit concurrency. Previous work has also looked
at the embedded processor as a controller—merely orchestrating data movement in the system and
not participating in computation. Our computation model assumes a programming paradigm where
the microprocessor is the focus of the CPU/accelerator platform; the CPU is the main executer of the
application. The hardware accelerator resources are only a method for accelerating segments of the code
wrapped as library calls that may be reused throughout execution.

Blocking while independent action is taken by the accelerator framework (e.g., data movement from
main memory or accelerator execution) is a wasteful approach. By making forward progress on the
portion of the application running on the CPU while the accelerator progresses, concurrency is increased
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and in turn performance is increased as well. The bulk of execution can take place while DMA transfers to
the framework’s local store and execution on the accelerators occurs, while some amount of computation
can take place on the host system that would otherwise be wasted cycles spent polling or waiting on
an interrupt. However, virtualization to increase concurrency may not yield any performance gains
and may in fact degrade application performance, occupying the processor while it could otherwise be
attending to the control actions needed by the accelerator. Furthermore, such an approach must weigh
the interference caused by accessing the same set of data or other shared resources as the accelerator
versus the potential gain provided by concurrent execution.

Performance is only one small part of reconfigurable virtualization; other virtualization techniques
are critical for the acceptance and the proliferation of applications incorporating reconfigurable hard-
ware. A library call approach to accelerator access allows for seamless movement between software and
hardware execution. Providing both hardware and software versions of the library allows for systems
without reconfigurable fabric, or embedded accelerators, to still execute the code, albeit at possibly re-
duced performance. Moreover, not adding additional instructions to the architecture maintains backward
compatibility with other machines of the same architecture family.

Software virtualization has not yet been fully implemented in our platform. There are multiple
avenues for future work to demonstrate further software virtualization. It is possible to run the virtualized
accelerator code inside the operating system, but this method may prove intractable or impossible
if certain functionality exported to applications by the operating system is not available within the
operating system itself, such as system calls. The operating system kernel may also be executing with
a reduced memory space that could preclude operating system execution. A more viable means to
execute accelerator code in software would be to spawn off a new thread or tasklet that could execute
the code at a later time. In symmetric multithreaded (SMT) environments, a helper thread could be
kept resident and swapped in with little overhead should software virtualization be necessary, similar
to what was studied by Keckler et al. in [31] for use in the M-Machine. Although we provide insight
into the application to operating system interface, we place no restraints on how the operating system
handles software virtualization. Without these restraints in our model, future systems designers will
have the freedom to chose an appropriate method for software virtualization.

The operating system interfaces presented in this work allow the operating system to virtualize the
accelerator resources by providing a consistent view of buffers to the application, regardless of the data
movement technique that was employed. If resources are unavailable, or the mapping must be changed in
the case of direct mapped access, the operating system can take the necessary actions at call boundaries.
Pushing these corrective actions into the system call allows the application to execute accelerated code
without regard to what hardware resources are physically available, providing complete virtualization of
the accelerator access.

2.3 Stream-Based Computation

A stream is both a data structure containing blocks of data and a set of methods for accessing those
blocks. Conceptually, a stream is a collection of independent data items flowing between processing
stages. An example of such a data block is an 8 x 8 macroblock for JPEG. A stream is different from a
scalar or a vector quantity in that it is multiple values, of possibly differ types, in some conglomeration.
Streams are accessed with the understanding that not all values of the stream may be available for the
computation initially. A stream of data can be thought of as a first-in, first-out (FIFO) structure that
is implemented as a queue. In our model, the stream has values (scalars or blocks) inserted into it by
the data producing source entity, which are consumed by the the sink entity, one at a time.

The semantics of the stream allow for not all data to be available when accessed by the sink. If no
data are in the queue, the stream can implement a blocking read which will cause the accelerator to
wait until data are available. Likewise, if the queue is full, the producer application must implement a
blocking write or expect its data to be lost. Fundamentally, the streaming model is applied at many
levels in the interaction model developed here as a means to connect components the CPU/accelerator
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Figure 2.3 Stream transactions with explicit control transfers represented by dashed lines.

system. The major use of streams in this work is as a means to collect logical units of ready data,
managed by the operating system, that are awaiting processing as depicted in Figure 2.3.

2.3.1 Application to accelerator streaming

Streaming in our model differs slightly from previous stream designs. Other reconfigurable systems
have taken a strictly stream-based computation model [21]. As in other models, our model has all data
flowing through the computation units as they become available. Data is manipulated at each accelerator
and the results are then placed in an output stream, completing the transaction. Conceptually, these
streams can be made infinite, but in practice infinite streams are not possible. Therefore, the system
designers must consider blocking reads and blocking writes. The way our model handles disruptions
in the flow of data is one of the differences between our model and other stream designs. Once the
application has placed a value into the stream, the application may or may not have a reference to the
transferred data. Furthermore, systems that allow for runtime reconfiguration while the accelerator is in
use must treat these streams as a form of state, to be maintained across accelerator context switches. We
specify distinct points where control of data and of accelerator resources is transfered between entities
in our model. Understanding the semantics and state associated with streams in our model is key to
programming our platform, while also having implications for extensions of our work such as accelerator
sharing in a multiprocessing environment.

Accelerator resource sharing between applications requires extra care be taken to ensure memory
consistency and coherence between memories and caches in the system. When resource sharing is allowed,
proper state maintenance is an issue. One example of the need for state maintenance is the point when
a source has added a value to an input stream, but before the sink has retrieved the result, at which
point reconfiguration is triggered. State maintenance could require a costly saving of all the data in
a stream and saving of the partially computed values in the accelerator. An example demonstrating
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the overhead of state maintenance is SCORE [21]. Streams in the SCORE model are blocks of data
that can be swapped out when hardware is reconfigured, maintaining the state. In an effort to reduce
accelerator context switching overhead, and the difficult task of extracting partially computed values
from accelerators, our model avoids maintaining a large amount of internal state.

We define a transaction as an explicit transfer of data and control from the operating system interface
to the accelerator subsystem, with the guarantee that the result will be computed and provided at a
later time. Once the transaction is completed, one entity or the other has control of the object, but
never both. State is never maintained in the framework memories, accelerators, or interconnect links
between transaction boundaries. Instead, the state is maintained by the operating system, making
the stream resident in memory. Our model simplifies state maintenance by reducing the number of
points where accelerator context can be swapped to transaction boundaries. With this added constraint,
system memory-based streams obviate the need to save any partial state between reconfiguration or
process-to-accelerator remappings, such as in the event of a priority-based context switch.

A preemptive system allows for an executing thread of an application to be stopped, its context
saved, and another thread allowed to run. When preemption is allowed, direct mappings between user
applications and hardware resources require buffering of input and output streams on process context
switch boundaries. An example where buffering is required occurs when a user is given direct access to
accelerator buffers with a data block (which may be incomplete) in the local memory of the framework
and the application is put to sleep. While the application sleeps, reconfiguration is triggered. Such a
situation can be handled in our model as all accelerator initiations begin at well-defined entry points to
the operating system. The operating system knows the state of the accelerator, and which processes it
belongs to, upon reconfiguration points or at accelerator access call boundaries. The operating system
takes the necessary action, such as buffering the input to the accelerator in system memory and restarting
the transaction at a later time.

Using streams to move the majority of data consumed by the accelerators allows the implementa-
tion to exploit high-throughput transfers at the expense of latency, relative to block-by-block transfers.
Results in this work show buffering into streams followed by explicit flushes to accelerator memory more
fully and efficiently utilize the framework and interconnection resources. To that end, the switchable
framework, expanded upon in a later chapter, makes use of cache buffering for direct mapping methods
and DMA transfers across the system bus from system memory for other access methods.

The framework does not enforce a policy with regard to stream block size or value type. Conceptually,
the application places data in a stream in one of three ways: into a user-level buffer, passing a pointer
to the operating system via a system call; into a DMA enabled region directly from user space; or into
the hardware buffer mapped directly into the application’s virtual address space. The last two methods
of inserting data into a stream take effect when the system call is executed, but less work needs to be
done inside kernel space compared to calls using kernel controlled data transfers. Further explanation
of various access methods and framework is left to a later chapter.

For many applications used to show the efficacy of a reconfigurable system (e.g., transform methods,
encryption, media encoding), there is a large amount of coarse-grained data-parallelism inherent in the
codes. A streaming model of computation is amenable to applications that have blocks of data that
can be sent off for hardware acceleration. However, not all applications are able to produce large blocks
of data due to data dependences and control constraints. The inability to dereference a pointer inside
accelerators would force many codes to be refactored at large expense, or would be made outright
intractable to port to a CPU/accelerator system. The marshaling that would be needed to consolidate
data from pointer-based structures into contiguous data regions for accelerators can exact a high cost
due to added copies. As an extension to the streaming model we employ, we add the ability to randomly
access system memory during otherwise streaming computation. Incorporating protected side accesses
into our model allows for a wider range of applications to make use of the computational power of
hardware accelerators. The details of our protected access method to system memory is left to a later
chapter.

There are limitations to the stream-based computation model. Data must be accessed in stream
block-sized chunks and the data are not randomly accessible from within the stream. Another possible
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model aggregates the necessary data and passes the data by value to the reconfigurable hardware. The
marshaling of data done to allow for blocks to be passed to accelerators results in additional overhead from
extraneous copies. Models that guarantee logically unbounded streams allow for hardware independence,
but at the expense of hardware and software management simplicity. The limitations imposed by purely
streaming models serve as the impetus for developing our switchable interconnect network and the
computation model discussed in this chapter. We adapt a streaming approach to a model that allows
for aggregating and accessing the streams in a way that allows for reduced buffering requirements for
accelerators and opens the possibility for random access to application data.

2.3.2 Interaccelerator streaming and data flow

The strengths of the accelerator framework we develop are its ability to interconnect multiple ac-
celerators seamlessly, to allow for modular hardware accelerators, and to enable resource virtualization.
Entry and exit points are defined by the application-to-framework transactions described in the previous
section, but the internal communication protocol must still be addressed. Our model for interaccelerator
communication is explored in the context of streaming input and dataflow computation at a high level.
The implementation details of interaccelerator communication are left to a later section.

Dataflow architectures [23] attempt to exploit data parallelism by removing the restraints of control-
directed execution and the memory bottlenecks present in conventional von Neumann processor architec-
tures. Dataflow architectures maintain only the data dependences in their code, enabling large amounts
of concurrent computation where data parallelism allows. However, dataflow architectures have not
overtaken control-flow driven processors as a computing paradigm due to their programming models
and scheduling inefficiencies. Furthermore, the functional programming languages that are a natural
fit for expressing the parallelism inherent in many codes, and used to develop applications for dataflow
machines [24], are not widely employed, while current application development trends toward proce-
dural and object-oriented programming models [32]. Learning from the dataflow community, many of
the techniques cited in [24] could provide a means for software developers to express portions of their
applications in a way that could more easily be mapped into hardware accelerators.

Dataflow machines suffer the inefficiencies brought on by fine-grained instruction scheduling. Dataflow
architectures, however, are able to take advantage of the natural parallelism in certain applications deftly,
but have yet to be proved feasible as a general-purpose computing model. Hardware accelerators rep-
resent a means to statically map data flow subgraphs, within the DFG of a portion of an application,
into a custom dataflow processor (hardware accelerators in our model). In the context of a dataflow
processor, the subgraph would otherwise be mapped into the processor’s instruction stream. Hardware
accelerators allow for the most appropriate regions of application code to be mapped into data-parallel
processing engines. Our model provides the conceptual framework and the interfaces necessary to achieve
dataflow-based accelerators.

An additional connection to dataflow machines is the ability to access variable latency data via the
accelerator memory management unit we develop. The ability to access variable latency data is analogous
to the input arcs being armed with tokens in dynamic dataflow machines—when the value is present,
the computation can fire. Another connection to the token-driven execution of dataflow machines is at
the core of the model we espouse for our framework. A dataflow-like communication protocol between
accelerator blocks is provided to stall interaccelerator communication. The means to stall data flowing
through the accelerators is necessary to enable random accesses that have nondeterministic timing.
Providing methods to access data outside of pure streams, and to stall computation in the event data
is not ready, allows for a more flexible programming model than a deterministic, purely stream-based
computation model.

Even though no commercial dataflow machines exist, the dataflow model is apparent in the execution
core of contemporary high-end microprocessors. Out-of-order (OOO), superscalar microprocessors [33]
have execution cores that rely on finding and tracking data dependences dynamically. OOO execution
provides speedup to a wide array of applications, but suffers from the cost of honoring proper control
dependences and the cost of maintaining correct program execution during speculative execution. More-
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over, statically identifiable dataflow relationships are lost in inherently sequential machine codes for
von Neumann architectures. The lost parallelism is only to be rediscovered by the power-hungry, OOO
execution engine. Our inter-accelerator model attempts to incorporate dataflow similar to what is done
using OOO execution, but without the prohibitively large overhead needed to rediscover lost parallelism
and without the restriction of limited functional units found in contemporary superscalar processors.

The split CPU/accelerator design allows our model to overcome the disappointing execution of
control-intense applications on dataflow architectures, but still exploits its parallel processing abilities.
We avoid the restriction imposed on general-purpose processors of having a limited number of execution
units available. The general-purpose processor is adept at executing codes that make heavy use of branch
prediction, control speculation, and small data sets (i.e., those that fit into the processor’s physical
register file and low-level caches). Hardware accelerators are capable of running many computations
in parallel with a set of functional units tailored to applications’ needs using distributed memory. The
framework and interfaces developed in this work integrate these two design philosophies in a consistent,
easily programmable way.

2.4 Summary

Integrating reconfigurable accelerators with applications requires creating defined protocols, stan-
dards, and communication models prior to their acceptance as a mainstream computing tool. The
streaming model for computation is a foundation of this work, but it has drawbacks and is not a com-
plete model for accelerator access. Even after choosing such a model, there are many remaining details
that must be explored. This chapter lays the groundwork necessary for understanding interactions
between applications, accelerators, memory and the operating system in the hybrid CPU/accelerator
platform presented in this work. Subsequent chapters will build upon the concepts developed in this
chapter to examine processing in a mixed CPU and accelerator environment, using a set of interfaces we
have constructed, that are demonstrated using our CPU/FPGA prototype platform.
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CHAPTER 3

RECONFIGURABLE DEVELOPMENT PLATFORM

The Xilinx University Program development board, based on the Virtex-II Pro [3] FPGA, provides a
development platform for embedded systems and reconfigurable architectures. The Virtex-II Pro FPGA
has two PowerPC (PPC) 405 processors embedded in the reconfigurable logic of the device. The em-
bedded processors allow the XUP board to serve as a system on a chip (SOC) prototyping platform.
A widely used operating system can be run on one of the embedded processors of the FPGA. Our de-
velopment environment runs a PowerPC implementation of the Linux 2.4.26 kernel. Only the processor
cores are hardwired; all other related and supporting logic—including system buses, memory controllers,
interrupt controllers, peripherals, and reset services—must be synthesized in the reconfigurable fabric.
The reconfigurable substrate further allows computer architects to explore the design space of future sys-
tems. One possible configuration is depicted in Figure 3.1. In this work, we make use of our CPU/FPGA
platform to prototype our hybrid CPU/accelerator model. We demonstrate that our platform can be
used as a prototyping environment for exploring future architectures.

3.1 XUP System Architecture

The system setup used throughout this work includes one of the embedded processors of the Virtex-
II Pro FPGA clocked at 300 MHz. The second processor is always completely disconnected from the
system.1 The processor has separate 16 kB data and instruction caches, no second level cache, and
256 MB of double data rate (DDR) system memory. The main system bus is a synthesized processor
local bus (PLB) running at 100 MHz. The PLB attaches the processor, the system memory, the on-chip
peripheral bus (OPB) and the reconfigurable system developed in this work. Figure 3.1 shows the DDR
memory and the PPC attached to the PLB. The OPB is shown bridged to the PLB providing access to
slower, more latency-tolerant peripherals. In the test platform, many of the OPB peripherals including
the VGA frame buffer, PS/2 ports, and Ethernet support have been removed to increase the available
slices for accelerator use.

There are many ways in which accelerators can be interfaced with the processor in our test platform.
In our model, accelerators can be attached to the 32-bit data side on-chip memory (OCM) bus as shown
in Figure 3.1. The purpose of the OCM bus is to provide the processor with a fast, deterministic scratch
pad memory. The address ranges mapped to the OCM bus are noncacheable, and the bus is accessed by
standard load and store instructions with a lower bound on the latency of two processor cycles. The ME
accelerator shown in the figure receives both control and data values via the OCM bus interface that is
connected to the accelerator through a dual-ported block of memory or BRAM.

We utilize the PLB exclusively for data transfers and make use of device control registers (DCR) for
the majority of control messages exchanged between the accelerator framework and the processor.2 The

1The Xilinx tools require the unused processor to remain connected to the JTAG chain and clock signals, but it is not
connected to the system.

2The DMA controller used in this work has PLB memory mapped registers for exchanging control messages. If complete
separation of data and control were desired, it would be possible to develop a DMA controller that used DCRs, relegating
all control traffic to the DCR bus and all data traffic to the PLB.
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Figure 3.1 The XUP system architecture.

PLB was chosen over the OCM because transferring areas of memory from the main system memory
(on the PLB) to the OCM bus requires the processor to oversee the transfer. Furthermore, using the
OCM bus disallows DMA transfers. Accesses to the PLB incur the cost of arbitration, possible cache
pollution, and startup overhead associated with standard loads/stores and DMA transactions. Accessing
the OCM from the PPC for small data regions has the advantage of removing arbitration and cache
pollution while providing deterministic timing for memory access. However, for data transfers that use
the DDR system memory as an endpoint, the PLB is already going to be accessed. If the other endpoint
for the transfer from or to DDR memory is the OCM bus, synchronization overhead and serialization
delay will result in greater latency and reduced throughput than if both endpoints were on the PLB.
Although the OCM can and has been used for accelerator development, we choose to explore the PLB
exclusively for data movement.

3.2 FPGAs as a Reconfigurable Prototyping Platform

In terms of computing technologies, FPGA-based computing is still a nascent field. FPGAs have
long served as the “glue logic” in low production systems and as a prototyping platform for systems
that would inevitably be implemented as application specific integrated circuits. FPGA devices have
advanced from a slow, low-density test and interface logic platform to a technology that can integrate
millions of synthesized gates, megabytes of on-chip memory, and gigabit I/O on and off chip, while
providing embedded, high-speed functional units. We leverage the flexibility and support for high-
speed functional units and processors that FPGAs currently provide to develop the prototype for our
computational model.

Contemporary reconfigurable platforms, such as FPGAs, provide researchers with the ability to
implement reconfigurable systems, but at clock speeds that are much slower than contemporary con-
ventional CPUs. Speedup on reconfigurable platforms can still be achieved by taking advantage of the
parallel nature of hardware designs. In FPGA, high clock rates are exchanged for the arbitrary recon-
figuration capability of its logic blocks. Fixed logic blocks such as DSP slices, multipliers, and BRAM
have been embedded into FPGAs catering to the applications that currently drive the FPGA industry.
Domain-specific additions show that the reconfigurable speed barrier is not immutable by providing
some amount of fast, fixed logic wedded to flexible reconfigurable logic on the a single chip. However,
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even with high-speed functional units integrated into the reconfigurable fabric, pure reconfigurable logic
still suffers from an order of magnitude slowdown in terms of clock frequency when compared to hard-
wired digital logic, such as ASIC. Therefore, any hope of showing tangible speedup with reconfigurable
logic, running at reduced clock speeds, requires that the hardware accelerated version exploit an order
of magnitude more parallelism than a software-only version.

A fully reconfigurable substrate only serves as a means to prototype novel architectures. In future
implementations, any component we develop that is common to all accelerators can be implemented in
fixed logic that is faster and more dense, in terms of transistors, than the reconfigurable version in the
FPGA development platform. The reconfigurable fabric of the FPGA provides an (almost) completely
unrestricted environment for developing accelerators (e.g., DCT and loop bodies) and the infrastructure
(e.g., DMA and interconnects) necessary to integrate the accelerators with the CPU, memory, and
peripherals. However, with the increase in flexibility, there is a cost in terms of packing density, speed,
and power dissipation that must be paid for using reconfigurable logic. When evaluating a reconfigurable
system we must be able to extricate the area and slowdown attributable to reconfigurable logic, from
the components that would be hardwired logic in a real implementation.

The interconnections necessary for attaching accelerators to the CPU may become as commonplace
in reconfigurable designs as memories and multipliers once were, leading to their being embedded into the
reconfigurable logic. Our framework and computing models provide some of the prerequisite knowledge
that will guide the development of the interconnection components implemented as fixed logic, as BRAMs
and multipliers are today, providing many of the speed and power benefits of ASIC to reconfigurable
systems.

3.3 Future Architecture Exploration

We examine a hybrid CPU plus accelerator model, exploiting data parallelism in hardware accel-
erators, to speed up standard applications. The generality afforded by using FPGAs can be exploited
beyond the “FPGA as a coprocessor” model. It is possible to survey many choices and decide upon a
highly tuned architecture prototyped on the FPGA. Cycle accurate simulators allow for arbitrary system
organization, but require assumptions to be made regarding timing and size requirements. Furthermore,
full system modeling using simulation can be prohibitively time consuming.

FPGAs allow architects to build novel systems into the reconfigurable fabric of our CPU/accelerator
model to enable future systems to be more effectively prototyped. No longer are designers bound by
the constraints of software simulation, nor by the high cost and long latency associated with ASIC
prototypes. Our model allows for designers to explore system configurations that utilize most of the
features found in contemporary microprocessors, such as those found on the PPC405, while running the
Linux operating system.

Our model allows designers to explore different organizations for buses, memories, interconnects,
peripherals, accelerators, and coprocessors with a level of flexibility and speed not found in simulators or
in the reconfigurable fabric of the FPGA alone. To enable fully unrestricted architectural exploration,
soft-core processors can be implemented that allow arbitrary changes to the processors’ microarchitec-
ture.

3.4 Summary

The continually growing number of transistors provided by Moore’s Law has allowed FPGAs that
were once relegated to menial “glue logic” tasks to take center stage as computing platforms. Moreover,
the reconfigurability of FPGAs allows for exploration of the architectural design space at speeds and costs
not previously seen. Our platform serves as an intermediate between conventional CPU architectures
and fully reconfigurable systems. With the bridge in place, future work can go beyond simulation and
prototype reconfigurable systems and novel computer architectures with the support of a widely used
operating system.
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CHAPTER 4

HARDWARE ACCELERATOR FRAMEWORK

In this chapter, a hardware framework for implementing and interconnecting hardware accelerators
is described. The complexity of designing and debugging hardware accelerators has been reduced by
eliminating over 80% of the signals that must be considered by developers. Further benefit is achieved by
providing a target for software interfaces, allowing the accelerator developer to concentrate on hardware
design.

The motivations and goals for our accelerator framework are developed. A stand-alone accelerator
is examined as a brief case study to demonstrate the complexity that must be navigated by a system
designer when using an unrestricted system interface. The features and limitations of our framework
are briefly discussed. A means to provide protected random-access to memory, the accelerator memory
management unit, is introduced. As a means to demonstrate the reduced design and debugging complex-
ity our platform offers, the accelerator developed in the brief case study is retargeted at the accelerator
framework.

4.1 Goals for the Accelerator Framework

Mapping accelerators into the general platform constituted by our CPU/accelerator system requires
many design choices. Such choices include what bus configuration to use, how to transfer data, what sorts
of memory to include, and how to interface hardware accelerators with software applications. Figure 4.1
depicts the choices an accelerator developer must make with darker regions indicating less flexibility,
wider regions representing longer access latency, and taller blocks indicating relative size for memories.
The subset of design choices we use is highlighted in blue in the figure. The application-level interfaces
are intended to abstract away the implementation details of the accelerator and the reconfigurable
system. However, this still leaves the problem of mapping accelerators into a general platform with
design tradeoffs for the operating system, the application software, and the system architecture. A
software-level interface, to complement the hardware-level interfaces developed in this chapter, is left to
the next chapter. The framework is one part of attaining the goal of providing a consistent interface
that decouples hardware accelerator design from software application development.

Having a general platform offers the greatest degree of flexibility for accelerator designers to choose
how to design and interface their accelerators with the software applications. However, the flexibility to
pick and choose bus protocols, bus widths, control interfaces, memory hierarchies, addressing schemes,
synchronizations mechanisms, and accelerator-to-accelerator protocols is at odds with providing con-
sistent software interfaces. Most accelerators do not need a level of complete flexibility, nor do their
designers desire debugging such an unrestricted implementation. Furthermore, the large number of sig-
nals that must be managed when supporting a general bus architecture, DMA controller, I/O ports, and
their associated interfaces can be cumbersome. Full system simulation is slow, potentially difficult to
set up properly, and can be impossible to implement if simulation models are not available. Using these
facts as a guide, we present a framework for developing reconfigurable accelerators and incorporating the
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Figure 4.1 Possible design and interface choices for our target platform.

Figure 4.2 System model for the XUP board with protection barriers shown.

accelerators with a conventional processor system. The high-level organization of our CPU/accelerator
system is depicted in Figure 4.2.

The goals of the switchable interconnect accelerator framework are:

• To remove the burden of understanding platform-specific bus interfaces from the application de-
veloper by reducing signal count. A platform-independent interface allows developers to design
accelerators once, and then take advantage of them on any platform where our framework is avail-
able.

• To reduce the overhead of communication and interface logic by taking advantage of embedded
logic, and sharing it among multiple accelerators. Examples of embedded logic in FPGAs to-
day include: memories such as BRAM, arithmetic units such as multipliers, and communication
mechanisms such as Rocket I/O [34].

• To ease the debugging process by reducing the number of signals in the top-level HDL design of
the accelerators.
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• To enable efficient runtime reconfiguration by electronically isolating separate accelerators. Even
though tools for runtime reconfiguration of accelerators [35] are becoming available, many of these
tools and the interfaces are still maturing, but when they are in widespread use, such isolation will
still be required and is supported by our framework.

• To provide a vehicle for future work in operating system interfaces and compiler generated accel-
erators.

• To motivate alternative data access models and programming paradigms for reconfigurable hard-
ware accelerators (i.e., break the stream and dataflow models to provide a more general computing
platform).

• To allow both coarse- and fine-grained accelerators to coexist, utilizing the same interfaces so that
many levels of parallelism can be efficiently mapped into our computing model. We use DCT as
an example of a more coarse-grained accelerator and quantize as an example of a more fine-grained
accelerator in this work.

The goals outlined above are reflected in our accelerator framework. The accelerator framework is
explored in detail in Section 4.4. However, first we will discuss accelerators that will target our framework
to further develop the motivation for the accelerator framework.

4.2 Reconfigurable Accelerators

We developed simple accelerators to help guide our thinking. Here we present a 2D DCT and
quantize accelerator for our motivating application, JPEG encoding. The JPEG encoder software has
a variety of components with high levels of parallel granularity that can be implemented as hardware
accelerators in FPGA logic. The developed accelerators were tested as stand-alone accelerators and
within the context of the accelerator framework we present here.

The software version of JPEG encoding used in this work was developed by the Independent JPEG
Group. The freely available, open source library provides a JPEG encoding implementation that is
optimized for single processor performance. The JPEG encoder utility included with the package is
cjpeg . The cjpeg utility can be configured to only use integer representation for all values computed,
obviating need for floating-point hardware (or emulation of floating-point on the PPC405, which lacks
an FPU). All modifications made to the compression utility included with the library were made to
all versions of the code for x86 (used for comparison), for PPC software (use as a baseline), and for
hardware-accelerated implementations (used to test our platform).

4.3 Stand-alone DCT Accelerator

The stand-alone DCT implementation makes use of a customizable intellectual property (IP) core
from Xilinx [36]. The core was wrapped with the necessary support structures to integrate it directly
with the PLB, to provide buffering, and to control the flow of data into the Xilinx-provided core. The
wrapped version will be referred to as the stand-alone DCT accelerator. The number of signals required
for debugging the wrapper that provides access to the bus, control logic, and necessary buffers is in
the hundreds. The developer must ensure that the proper inputs are provided to the bus and the
signals coming from the bus are handled by the control logic in the accelerator properly. Furthermore,
debugging a stand-alone interface attached to the bus and to an IP core, while being controlled by a
software application running on the CPU, possibly under the control of an operating system, requires
complex simulation models for the bus, processor, and other system components. As we will show, relying
on our accelerator framework replaces the otherwise onerous task of full hardware platform debugging
with a reduced-complexity unit test, that has a common interface for all accelerators.
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Figure 4.3 DMA transfer rates from system memory across the 100-MHz PLB to the accelerator buffer
with transfer sizes in bytes.

4.3.1 Accelerator design

The DCT core allows for a fully pipelined design, that takes a 12-bit sample, sign-extended by the
software encoder to a 16-bit value, every 10-ns clock period. The latency of the device depends on
internal datapath widths, coefficient value sizes, and input/output precision. All combinations used in
this study result in a latency of 100 ± 10 cycles. It is possible to clock the DCT at over 140 MHz on
a Virtex FPGA, a lower-speed FPGA relative to our platform. However, a 100-MHz clock is chosen so
that there is no need to cross clock domains between accelerators and the bus. Furthermore, decreasing
the clock frequency reduces pressure on place and route, yielding faster design build times.

Data transfers from main memory to the accelerator are accomplished via DMA. Figure 4.3 shows
the throughput of the DMA engine used in our platform. Each transfer must be set up as a sequence
of four stores to the PLB memory-mapped control registers for the DMA controller. The DMA engine
local to the accelerator must then arbitrate for the bus. The DMA controller will proceed to move an
entire 64-pixel macroblock in a single burst transfer. The DMA controller has an internal buffer for rate
decoupling between the bus and the framework. The dual-ported internal memory we integrate into the
accelerator has a 64-bit port attached to the bus, allowing for a read or write every bus cycle, providing
for maximum bus utilization.

The stand-alone version of the DCT accelerator implements a single buffer instantiated as a BRAM.
The accelerator is attached to the PLB and data transfers are accomplished using an integrated DMA
engine. Due to the design of the DMA engine and parameterized interface to the PLB provided by
Xilinx, an entire macroblock (16-bits per sample * 64 samples per block = 128 bytes) is the maximum
that can be transfered in a single burst transfer. The size of the data array could be increased to allow
for multiple macroblocks, but due to the limited buffering of the DMA controller, the macroblock array
would need to be partitioned into 128-byte transfers with the DMA engine re-arbitrating for the bus
between burst transfers.

Cache coherence, between the data to be transfered via DMA from system memory and the data that
is present in the data cache of the PPC, is an issue that must be addressed. Both the DMA controller
and the processor are accessing memory that may be cached. The entirety of the JPEG encoder is not
implemented in hardware and as such, the host application must first process parts of the data stream
before handing the data off to the DCT accelerator for processing. It is possible—and depending on
implementation, likely—that the next macroblock to be processed by the accelerator is resident in the
processor’s cache and differs from the copy of that data in main memory. To maintain coherence between
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Figure 4.4 Flow chart of accelerator execution using the ioctl() system call.

the version of the macroblock to be processed resident in memory and in the cache of the processor, an
explicit flush must be performed prior to any DMA transfers taking place.

In the stand-alone accelerator, a set of control registers is memory-mapped on the PLB for accessing
the accelerator. There is a register that is set by the host application to being executing the accelerator
once all the data is available in the accelerator local memory. Another register is used for polling by the
host application and is set by the accelerator when all the output is available in the local output buffer
of the accelerator.

4.3.2 Software integration

Integrating the accelerator with the driving application (cjpeg ) was accomplished by developing a
character device driver for the stand-alone accelerator. System calls used for accessing character devices
under Linux are already implemented and wrapped in user-accessible library calls. An ioctl() system
call provides the necessary interface for the accelerator, but with unnecessary checks and data structure
maintenance that have the effect of reducing performance. A new system call is developed to provide
the same service with reduced overhead in Section 5. However, having such an interface that can be
taken “off the shelf,” expedites development efforts, requires fewer changes to the operating system, and
enhances consistency across accelerators.

Figure 4.4 shows the interactions between the driver and the accelerator framework. To access
the accelerator, the user application passes the ioctl() call associated with the device driver for the
accelerator a pointer in its virtual address space. The pointer is to a 128-byte region containing a single
8x8 pixel macroblock. Each macroblock is stored as 16-bit, signed integers with big endian byte ordering.
The device driver performs protection checks and then copies the data from user space to a statically
allocated kernel buffer used for the DMA transfer. If invalid input is provided by the application, an error
code is returned by ioctl(). The DMA buffer is marked cacheable by default in our implementation to
reduce the cost of single word writes to an uncachable buffer in system memory. The region of the data
cache the kernel buffer maps into is invalidated and flushed to system memory. The DMA transfer is
initiated using a series of word writes to memory-mapped control registers. Once the DMA transaction
begins, the driver polls the DMA controller status register until completion.

Once all of the data has been moved from system memory to the accelerator local memory, the
PLB-mapped control register for the DCT accelerator is written to begin DCT accelerator execution.
The driver then polls on the accelerator completion status register until it is cleared, signaling completed
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execution. Concurrent with accelerator execution, the driver invalidates the cache region of the DMA
input buffer to ensure that reads from the accelerator will reflect the output of the accelerator and not
be referencing stale, cached data. The accelerator framework could have been implemented to handle
DMA transfers without intervention on the part of the processor. However, due to the platform we were
using, the desire to keep as much flexibility as possible in how the software accesses the framework,
and the transfer sizes of our test application, we did not add the functionality into the framework that
would have allowed the processor to do additional independent work while DMA transfers occur. When
computation is complete, another DMA transfer is initiated, moving data from the accelerator local
memory back to system memory. The driver copies the data from the kernel buffer back to the user
space buffer. The driver returns control to the calling application. A more in-depth look at device driver
access to the accelerators using the framework is presented in the next chapter.

The stand-alone design, using the device driver interface, is far from optimal and could be improved
by finding ways to move larger amounts with each transaction to mitigate the effects of protection
boundary crossings and to allow for more computation and communication concurrency. With respect
to data moving from the application to the accelerator, communication entails the cost of memory
transfers from the system memory to the local store of the accelerator, and the computation cost is
the time spent executing the accelerator. With only one macroblock being sent via the ioctl() call
per transfer, the cost of the system call and kernel/user space memory protection boundary crossings
must be amortized over a small amount of execution time. A far more efficient method would allow for
a large number of macroblocks to be transfered to the driver in a single transaction. Doing so allows
the system call overhead to be amortized by the longer runtime of the accelerator. Furthermore, larger
block transfers to the accelerator allow for overlapping communication and computation, mitigating the
performance impact of the DMA setup time, PLB arbitration, and coherence actions. Even though
streams of blocks must be broken into 128-byte chunks, the control required for doing so is handled
by the DMA controller1 allowing the CPU to make forward progress during data transfers. Another
approach is to have more macroblocks available concurrently, allowing for multiple DCT and quantization
pipelines. Doing so increases performance while also reducing the system interface/memory transfer to
reconfigurable accelerators ratio.

An issue with the DCT core used was encountered in the design of the stand-alone DCT accelerator.
We were unable to get a bit-accurate DCT at any level of precision (matching neither Matlab nor libjpeg
output). The errors present in the final design are apparent when viewing the compressed images, but
with little quality degradation. The loss of quality could be avoided by making use of an accurate 2D
DCT core, but developing such a core is beyond the scope of this work. The errors introduced by the
DCT core have no impact on timing or interface method, which are the measures of interest to this
study.

4.4 Switchable Interconnect Implementation

The switchable interconnect accelerator framework is implemented in VHDL and synthesized using
the Xilinx toolflow [34]. The targeted hardware platform is the Xilinx University Program (XUP) board.
The prototype framework system has two reconfigurable regions, or reconfigurable frames, that can be
interconnected and/or interfaced with input and output buffers. A reconfigurable frame is similar to
a page frame in that it is only the location where the accelerator will be mapped, but not the actual
accelerator. We refer to actual accelerators as accelerator blocks. Figure 4.6 shows the interconnections in
the framework with three reconfigurable frames and input/output buffers. The interconnection network
is connected to the PLB for data transfers and DCRs for all control functionality except for DMA setup.
The DMA control registers are memory-mapped registers on the PLB. The input/output buffers and
DMA control registers are accessible to the processor via physical addresses. The physical address range

1As stated earlier, DMA bursts can only be 128 bytes, however the size of the entire transfer is limited only by the size
of address buses and counters internal to the controller. Our current implementation can transfer up to 2 048 bytes (16,
128-byte bursts) in a single DMA transaction.
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Figure 4.5 System interface to accelerators via DMA data transfers.

can be mapped into the virtual address space of the kernel or user space applications for debugging
purposes.

The accelerator framework has a memory management unit (MMU) with an integrated translation
lookaside buffer (TLB). The accelerator MMU mechanism provides accelerator-initiated, protected access
to data across the PLB bus. A DMA controller is provided to transfer data into input and out of output
buffers integrated into the framework from the system memory as shown in Figure 4.5. The basic mode
for accessing the framework is via a character device driver using ioctl() system calls. More methods
are discussed in the next chapter. All accelerators are synchronized to the same clock. The current
implementation runs at 100-MHz, but could be scaled depending on the maximum speed of the slowest
accelerator instantiated in framework.

4.4.1 Interconnection network

The accelerator framework and its embedded interconnection network provide for synchronous
dataflow between resident accelerators, electronic isolation of accelerators for runtime reconfiguration,
and export a simple accelerator-to-system interface. The accelerator framework is controlled by a set
of registers connected to the PPC DCR bus. The interconnect network can effectively be switched in a
single accelerator clock cycle, but is asynchronous with respect to the processor. Protected access via
the MMU is provided to each accelerator block.

Once a transaction with the framework is initiated and data is available in the input buffer, the
data is allowed to stream through the sequence of accelerator blocks in the framework. Each accelerator
frame provides an input and an output interface for interacting with the other accelerator blocks of
the switchable interconnect network. A feature of the accelerator frame interface is a means to assert
backpressure between two accelerator blocks. Backpressure, in our model, is the ability for an accel-
erator block in the role of sink to signal its source that it is unable to take any more data as input.
The framework requires that any source node hold its current output state starting the cycle its sink
asserts backpressure. If no internal buffering is implemented in the source, the source must propagate
the backpressure signal to its source.

Our backpressure mechanism differs from other stream-based schemes, such as [10], where queues
are used for rate matching. Instead, our model delegates the responsibility for internal buffer manage-
ment to each accelerator. Therefore, no state is maintained in the channels. Placing no restrictions
on interaccelerator buffering mechanisms allows developers to choose the level of buffering complexity
commensurate with need. For accelerators that are rate-matched and do not use the variable-latency
side-path for data, not supporting build-in buffer management is of little consequence and simplifies the
framework architecture. Backpressure allows for flexible buffering for those accelerators that require it,
while simplifying the design of accelerators that are fully stream-oriented and rate-matched.
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Figure 4.6 Accelerator framework block diagram.

The interfaces developed in this work serve as a starting point. As software to hardware accelerator
mapping technologies evolve and the target applications shift toward more variable grained accelerators,
the accelerator-to-framework connections can be changed to provide a more suitable interface. In our
prototype, the bus widths are chosen for their applicability to JPEG encoding and to fall on byte
boundaries, but could be scaled in future implementations. However, further upward scaling in an
FPGA implementation places more strain on routing. The strain leads to higher synthesis times and a
reduction in the number of accelerator frames that can be generated in an FPGA implementation. The
intended target for implementing the framework includes interconnects that would be hardwired logic.
These could then be switched (i.e., redirect data flow from one frame to another), reducing complexity
and overhead, and obviating the need to route the signals as they would already be present in the fabric
at fixed locations. Accelerators would plug into the embedded interconnect network, achieving dense,
high-speed channels while using the interfaces we develop here to interact with software applications.

Figure 4.6 shows the input and output signals that are available for reconfigurable blocks to use.
The top of the reconfigurable block shown goes to the preceding block while the bottom is attached to
the succeeding block. On the input side of a reconfigurable frame are the data in and data in addr
buses for data flowing into the accelerator frame. The initial implementation uses a 16-bit data bus
and a nine bit address bus. The handshaking protocol used to communicate between accelerator frames
uses the signals new data, start in, RFD out (Ready For Data), and done in. The output side of a
reconfigurable frame includes data out and data out addr buses with widths that match the data in
widths. The signals associated with the data out side of the frame include the signals valid, start out,
RFD in, and done out. Each reconfigurable frame also has a 16-bit control signal mapped to a DCR as
an input that is left unused for the example accelerators in this work. A total of 58 separate signals are
required without considering the signals necessary for the control which may be unused by the accelerator
or side-path access using the accelerator MMU described in a later section.

The interfaces provided by the reconfigurable frames in the framework allow for both “push” and
“pull” semantics. It is envisioned that data will be pushed through the framework in a streaming fashion.
However, data enters the pipeline by being pulled in by the head accelerator. The flow of data is started
when the reconfigurable accelerator block that is connected to the input buffer, the head accelerator,
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pulls data from the buffer using its data in and data addr in ports. Our implementation includes a
small state machine that feeds data automatically to the first accelerator in row-major or column-major
ordering based on an 8x8 matrix of values. There is no need for pull semantics if the configurable state
machine provided offers the stride needed by the head accelerator. Future designs could incorporate
more complex logic to feed data to accelerators, placing the burden of pulling data from the buffers onto
the state machine and not the accelerator designer.

When a new burst of data (e.g., a new macroblock in JPEG or a new loop iteration in more fine-
grained approaches) is available inside a reconfigurable block, the control for that block asserts the
start out signal along with the valid signal for a single cycle. New data blocks enter the pipeline
of accelerator blocks at the head block, which is attached to the framework local memory, and either
receives the data as a push from the state machine or pulls the data. The actions of the state machine
are based on control register values. The start out signal communicates to the subsequent accelerator
that a new block of data is starting and valid signifies a new data value is ready to be consumed. The
start out signal could also be used as a reset, cutting off the execution of a prior task on the subsequent
frame.

Every cycle data is available to be passed to the next accelerator frame, data out, data out addr,
and valid are asserted. Upon completion of the current block, concurrent with the last input value,
done out is asserted. If valid goes low between the assertion of a block starting and it complet-
ing, the subsequent reconfigurable block stalls until the next valid signal qualifies the data out and
data out addr buses.

Next we give an example from the point of view of an accelerator in the role of source. Figure 4.7
shows the timing diagram for a sample data block, seven words in size, being transferred between two
accelerators. All transitions are on the rising edge of the clock. At time zero it is assumed that there
are no pending transactions and therefore the address and data buses are not valid and the valid signal
is not asserted. In cycle 1 the start out signal communicates to the sink that a new block is starting.
The valid signal qualifies the data on data out and addr out in each cycle it is brought high. Three
data values are sent at which point the source deasserts the valid signal to stall the sink. In cycle 5
the source reasserts valid to stop stalling and one more data item is read by the sink. In cycle 6 the
sink lowers its RFD signal. The source holds the values of data out and addr out until the sink can
accept data again as signaled by the sink raising its RFD signal. In cycle 8 the sink raises RFD and reads
the value produced by the source in cycle 6. Two more data items are read out by the sink before the
block is finished at cycle 10. The done out signal is asserted by the source at cycle 10 to communicate
to the sink that the last value in the current data block is available. There is no data block immediately
following the current one and therefore, in cycle 11, valid is brought low by the source.

There are tradeoffs that must be made when reducing the number of signals that are used by the
accelerator framework. The developer loses the ability to freely access memory-mapped regions and
system memory. The internal accelerator data and address buses have also been reduced in size to
match our target applications. The PLB allows for byte-addressable random accesses, but our prototype
framework only allows 16-bit accesses when streaming. However, the accelerator developer does not
have to be concerned with arbitration and can access the local memories provided by the framework
deterministically. The accelerators built using our framework cannot arbitrarily set up control registers
or physically addressable buffers. The payoff for the reduced flexibility is simplified generation of accel-
erators that fit into our computation model and the ability to take advantage of the software interfaces
we develop for our framework.

The accelerator framework is switchable in the respect that the channels between each of the blocks
can be redirected from one accelerator to another. There are an equal number of lines on the output
bus as there are on the input bus. The signals have been selected such that a direct connection from
input of one accelerator to the interface of the next is possible. The processor redirects the channels
in the framework by setting a DCR. A DCR command can be executed in approximately ten processor
cycles, or three accelerator cycles, adding a small latency to switching of the interconnects. It is assumed
switching will take place at transaction boundaries as there is no way to synchronize the accelerators
with the switching, other than at points in the framework’s operation where all accelerators are idle.
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Figure 4.7 A timing diagram from the source point of view writing six words. Stalling and backpressure
situations are shown.

Once the DCR write instruction commits on the processor, the accelerator framework is set to the new
configuration.

A further explanation of backpressure is required. Backpressure it is a necessary component of the
protocol developed for the framework due to the variable latencies associated with the side-path accesses.
Furthermore, by providing backpressure, a slower accelerator can signal to a faster accelerator without
any mind paid by the developer. Rate decoupling allows for heterogeneous, asynchronous execution units
that ease development by not forcing all accelerators to operate in lock-step or the developer to reason
about timing, while supporting more accelerator execution models. In the current implementation,
however, all accelerators and interfaces are synchronized to a common clock. The two RFD signals are
used for providing backpressure. When asserted by the sink, RFD signals to its source that the flow
of data must be stalled beginning that cycle. The data and address values at the start of that cycle
that are valid at the output of the source are not consumed by the sink. The source must hold the
values present on data out, addr out, and valid until the RFD signal from the sink is brought high.
Since no buffering is available in the channel, if no buffering is implemented internally by the sink, the
whole pipeline must stall, resulting in potential slowdowns. However, without the need to understand
the complexity of asynchronous events, correct execution is maintained due to the handshaking protocol
employed.

The backpressure asserting, handshaking protocol demonstrated here allows for rate decoupling be-
tween connected accelerators, variable latency loads/stores via the protected side access path, random
access to input and output memories, and most importantly, a simplified model for mapping reconfig-
urable accelerators into a conventional computing environment. Our model is not necessarily the best
model for interactions between reconfigurable blocks, but serves as a starting point and a basic model
for mapping hardware accelerators into applications.

4.4.2 Accelerator MMU

The Accelerator Memory Management Unit (aMMU), as shown in Figure 4.2, provides accelerators
with a method to access data outside the stream provided by the input buffers and other accelerator
blocks. The accelerator MMU is depicted in Figure 4.8. Accesses to system memory are addressed using
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Figure 4.8 Block diagram of the accelerator MMU.

the virtual address space of the application associated with the accelerator. The aMMU has a translation
lookaside buffer (TLB) to provide the translation and protection. The translation mechanism maps fixed-
sized regions of virtual memory and is filled by the host system. Each entry maps a page-aligned, 4-kB
region of virtual memory into the systems physical address space. The current implementation uses a
four entry, direct mapped TLB that associates a 3-bit accelerator identification number (AID) with each
entry, allowing each accelerator to have independent entries in the TLB. The software managed TLB
provides independence among accelerators and thus different applications can share a single accelerator
framework.

One of the goals of the framework is to provide a platform for developing reconfigurable accelerators
that can be implemented with varying degrees of closeness in their coupling (i.e., the framework will
still work when implemented as a coprocessor sharing the cache with another core, or when it is a
stand-alone unit on a peripheral bus as demonstrated in this work). To that end, the framework uses an
asynchronous protocol to handle the variable latencies possible when accessing memory via the aMMU.

The accelerator frames access memory via the aMMU using a simple request-acknowledge protocol.
A block diagram for the aMMU is shown in Figure 4.8. When an accelerator requires access to data via
the side-path, it sets either its ReadRequest signal or WriteRequest signal. Concurrently, the accelerator
places data on the data out bus (for a write) and the valid virtual address of the data to access. The
accelerator must then wait for an acknowledgment signal from the aMMU. If the accelerator exceeds its
ability to sink data while waiting on the request, it asserts backpressure to stop the flow of data in from
preceding accelerators.

When a request is received by the aMMU from an accelerator, the TLB is accessed using the two
least significant bits of the stored page address (bits 18 and 19 for the 32-bit addresses used in the
framework). The entry is checked for validity, permission, and a matching accelerator ID number. If
the checks all succeed and access is granted, the associated physical page address is concatenated with
the least significant 12 bits of the virtual address from the accelerator request. A request is then made
to system memory in our prototype or, in future implementations, the cache or local accelerator store.
When the data is available, in the case of a read, or has been written, as is the case of a write, the
acknowledgment signal is asserted for the particular accelerator block.

Currently, TLB fills are handled by the device driver associated with the framework using device
control registers (DCR) to communicate data between the host system and the framework. The host
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system is able to create a protection boundary between the accelerators mapped into the framework and
the system memory. The framework creates a protection boundary by only allowing specific regions of
physical memory set by the operating system to be mapped by the TLB of the aMMU. Any access not
mapped by the TLB will result in an error signal delivered to the violating accelerator and, in future
implementations, can interrupt the processor to fault in missing mappings. The TLB maintains a single
protection bit signaling read-write access or read-only access. Each entry also has a valid bit that can
be cleared by the host system to disallow future access to a previously installed mapping. The TLB fill
is handled by the operating system setting two DCRs, the second write signaling the fill is complete to
the accelerator.

The aMMU has the ability to access the PLB directly as a bus master. As such, the framework
can access any of the system resources on behalf of a requesting accelerator. For example, an audio
dithering accelerator could place its result data directly into the sound card buffer. Accessing device
buffers directly removes the need to copy data twice more across the bus between the accelerator,
CPU, and audio device. Future implementations could take advantage of different access methods,
but the translation and accelerator interface would remain unchanged, furthering the goal of coupling
agnosticism.

Many research efforts in developing reconfigurable systems have concentrated on stream-based com-
putation models; the limitations of such a model were discussed in Chapter 2. In the design of a shared
resource, such as the aMMU and its associated TLB, it is necessary to understand how arbitration, prior-
itization, and resource sharing will affect the aMMU design and the implications for framework mapped
applications. We implement a basic configuration for side-path access necessary for our stream/random
access model, while leaving room for future implementations to tailor the interface to their needs.

4.4.3 Framework DCT accelerator

A stated goal of the framework is to decrease the effort required to develop and debug accelerators
in the context of our hybrid CPU/accelerator model. The entire system is comprised of the processor
running applications and a full operating system, the bus models, hardware accelerators, and external
interfaces such as input peripheral devices. It is possible to model the entire system using a register
transfer level (RTL) simulator such as ModelSim [37]. Using a simulator to debug the entire system
is too slow to use effectively and/or too difficult to set up in practice. By constricting the interface to
fewer, predefined signals, the switchable interconnect accelerator framework enables developers to design
accelerators without considering the entire system, expediting the design and debug processes.

By avoiding modeling the entire system and avoiding modeling the accelerators’ interactions with the
host, the framework makes debugging more manageable. The framework brings the number of signals
necessary for debug below 100, provides a way of interconnecting multiple accelerators without access-
ing the system bus directly, and provides a target for our application-level and operating system-level
interfaces. In the stand-alone design, there are over 400 signals that connect the DCT and quantizer
accelerators with the buses. The high number of signals, coupled with the difficulty in simulating the
PLB and operating system interaction accurately, makes independent accelerator development overly
burdensome. The interfaces to DCT and quantization are redesigned to work in the accelerator frame-
work as a demonstration of the framework’s capabilities, but also to demonstrate the framework as a
reduced complexity interface that provides all the resources necessary for accelerator development.

Another difference of note is the separation of control and data transfers, with polling taking place us-
ing a separate resource from the data bus, in the framework version of the accelerator. In the stand-alone
DCT accelerator, memory-mapped control registers accessed across the PLB are used to communicate
out of band information to the accelerator. However, memory-mapped control registers reduce concur-
rency as a DMA transfer or cache line fill cannot occur while the accelerators are being controlled or
polled. The framework enabled version implementation uses the device control register (DCR) bus that
has 10 processor cycle (3.33 accelerator clock cycle) access. Accessing the DCR is independent of the
PLB, which reduces contention and increases performance. Due to the limitations of the provided DMA
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controller, DMA control registers remain mapped to the PLB, but with some effort could be implemented
as DCRs as well, fully separating data and control channels.

Debugging the stand-alone DCT design is a long and laborious process, even with high-quality
tools to assist the developer. The debugging process consists of both simulation using ModelSim and
emulation on the board (assisted by software debug utilities, such as Xilinx’s ChipScope [38]). While
still using the same tools, porting the DCT accelerator to the framework was accomplished in an order
of magnitude less time than was required to developed the initial system interface. Furthermore, the
constrained interface allowed for complete, fast simulation and verification in software prior to the
design ever being run on the FPGA. The changes to the design were minimal when porting, as the
framework was developed using JPEG as a motivating example. However, some redesign is necessary
to provide mechanisms for communicating solely through the framework’s handshaking mechanism and
removing assumptions about how one accelerator feeds data into the next. Porting of the quantizer to
the accelerator framework followed a similar design path.

4.5 Summary

We have developed a framework for building accelerators that provides a target for our software
interfaces and simplifies the design and debugging processes. We reduce the complexity of debugging
by bringing the core number of signals that must be modeled by the developer down from over 400 to
58. Our protocol for interaccelerator communication allows for accelerators to be developed as logically
separate components and then integrated using our framework. We have built an accelerator memory
management unit that allows protected access to system memory using processes’ virtual address space.
We have constructed the necessary buffering, data flow protocols, control logic and registers, and bus
interfaces to expedite accelerator development and to provide a possible target for future automated
tools.
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CHAPTER 5

OPERATING SYSTEM INTERFACE

In this chapter the model for accessing accelerators using the device driver interface developed is
explored. We demonstrate the device driver as a basic model, then present a set of four interface methods
that offer a variety of tradeoffs for accelerator developers. The interfaces demonstrated in this chapter
only vary in how the operating system handles the accelerator requests from the user application, while
most of the application interfaces, and all of the hardware accelerators/accelerator framework, remain
unchanged. This chapter demonstrates a set of OS arbitrated access methods and system architectures
that can be matched with the data transfer requirements of varied workloads based on results that will
be discussed in Chapter 6.

5.1 Device Driver Access

The hardware accelerator-to-framework interface provides an abstraction that frees the accelerator
developer from the onerous task of system integration via buses and control registers. Likewise, the
interface provided to the application can be made consistent by wrapping the system specific details
in a set of system calls. A simple interface method could have the application write data out to the
accelerator and then read them back in at a later time as shown in Figure 5.1 Abstracting away the
underlying details of implementation allows for a layer in which applications developers are provided
with a simple interface and the underlying system can make best use of its resources. The simple device
driver interface, first shown in Chapter 4, serves as a starting point. Using a device driver provides
the applications developer with a set of system calls, wrapped in library routines using the well-known
character device model, allowing the accelerators to be integrated with the operating system in a modular
and well-understood fashion.

The software-only version of our test application cjpeg was augmented as little as possible to enable
hardware accelerator integration. The simple character device driver is accessed by only three system
calls: open(), close() and ioctl(). The ioctl() character device driver system call was chosen
because it had the lowest overhead for a call that allowed the application to pass two parameters to the
driver. A new system call could have been inserted for the accelerator and tailored to the application.
However, the simple device driver method fits into the existing interfaces provided to character device
drivers under Linux. Doing so allows the accelerators to look exactly like any other device in the system
to the application.

Access to the hardware accelerator traces a simple flow starting with an open() system call to
reset and initialize the accelerators, followed by multiple ioctl() calls to transfer macroblocks to the
accelerator, and finally a close() system call to free access to the accelerator.

Initializing the accelerator, using the open() system call, resets the accelerator framework and
DMA engine to ensure that everything is in a known state prior to accessing the accelerators. The
shared implementation (i.e., one where multiple applications share the same accelerator framework)
does not reset all the accelerators and the DMA controller on open(). In such multiaccess situations,
the framework is reset only between transactions, or at accelerator context switch points, when a single
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Figure 5.1 Example operating system interface using read() and write() system calls.

Figure 5.2 System block diagram with control and data transfers.
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Figure 5.3 Flow chart of accelerator execution using the ioctl() system call.

applications issues accelerator requests and is eventually swapped out, leaving the accelerator unlocked,
and another process is then swapped in.

In a strict model of access, where sharing is only allowed between uses, all open() calls block until
the resource is free, at which point the operating system chooses the next process to give access to the
framework. A blocking open() model limits concurrency severely. One model discussed later leverages
virtualization of hardware resources to work around the case where the hardware must be locked between
uses and two applications desire access to the accelerator framework. For the hardware infrastructure
developed here, it is only necessary to maintain serial execution on a transaction-by-transaction, or
ioctl(), basis, so open() locking is unnecessary. Instead, no state is maintained between transactions
with the accelerator, allowing independent threads of execution to share the accelerator on a block–by–
block basis.

Figure 5.2 depicts the flow of control and data for a call to the accelerator. Red lines denote control
register transfers between the CPU and accelerator, green lines are used to represent data accesses by
the processor and flushes, magenta lines represent the DMA transfers between the system memory and
the accelerator local memory, and light blue lines show the PLB-mapped control registers for the DMA
controller. Figure 4.4 has been reproduced as Figure 5.3 to assist in tracing the flow of control and data
in the example below. In the reference to both of the figures, the following actions take place:

1. The application generates some data that is to be operated on by the accelerator. The data is placed
in the user input buffer. The user input buffer exists as a contiguous region of the application’s
virtual address space, that is dynamically or statically allocated.

2. The application makes a call to the accelerator by issuing an ioctl() system call any time after
initializing the framework with an open() system call, passing the call both a pointer to the user
input buffer and the number of items in the buffer.

3. The data in the user input buffer represents a single macroblock in the simplest case for JPEG.
The second parameter can be ignored. The kernel input buffer is a statically allocated array that
is physically contiguous and marked as reserved so that it is capable of being accessed via DMA.
The data in the user input buffer is copied to the kernel input buffer.

4. The cache lines occupied by the kernel input buffer are flushed from the cache to ensure coherence
with system memory.
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Figure 5.4 Percentage of time spent in each stage of the accelerator system call.

5. The source address, destination address, and setup word are sent to the memory mapped registers
of the DMA engine instantiated in the accelerator framework. The length of the transfer (0x80 in
the case of the 8 x 8 16-bit macroblock used for JPEG) is written to the memory mapped DMA
register, initiating the transfer from system memory into the local memory of the framework. On
either side of the store instruction to the DMA length register is a synchronization instruction
(eieio) that ensures all the information required for the DMA transfer has been written to the
DMA controller and so any future access to the control registers of the DMA controller reflect that
a transfer is taking place.

6. While the data is being transfered into the BRAM constituting the local memory of the framework,
the system call polls on the DMA memory mapped status register. When the register is cleared
by the DMA controller, the accelerator driver proceeds.

7. The system call sets up the interconnect network as needed by setting a DCR mapped into the
framework design. With the data in the input buffer of the framework, the system call starts the
execution of the accelerators.

8. The design polls on a DCR mapped into the framework that is cleared when accelerator execution
completes.

9. The kernel result buffer is a second kernel space buffer that is used by DMA transfers from the
accelerator. The cache lines associated with the kernel result buffer are invalidated to ensure
coherence.

10. Another DMA transfer back into the kernel result buffer resident in system memory is initiated by
the accelerator driver.

11. The kernel copies the data from the kernel space DMA buffer back to the same user space buffer
that provided the input data, and returns.

The time spent in each stage of the system call described above is shown in Figure 5.4. The simple
device driver interface has many opportunities for pipelining, concurrent execution, optimization, and
alternative access methods. However, to its credit, the character device driver access method provides
a well-understood interface for hardware resources in the system. Using the simple character device
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driver model as a basis, we present a set of access methods that are employed with a near-identical,
application-level interface, but handle buffer management and data transfers in alternative ways.

5.2 Protected Mode Data Transfer Methods

The operating system provides an abstraction, separating the user-level application from the un-
derlying hardware. Even when only considering a library call-like interface, and without changing the
way in which the application accesses the underlying hardware accelerators, there are many possible
avenues to be taken. Decoupling the logical flow of data from the application to operating system and
from the operating system to the accelerator local memory allows for swapping between access methods
transparently by the operating system. This section explores four different access modes for moving data
between the application running on the host processor and the reconfigurable accelerators built into the
switchable interconnect network.

The alternative access methods developed in this section differ from the simple device driver model
in the way in which data is transfered to the accelerator local memory. However, the application interface
is kept as similar to the simple device driver model as possible to allow for future work to transparently
swap between access methods, without requiring modifications to the application code. Further changes
include the ioctl() call being replaced by a system call specific to the driver to reduce call overhead and
provide added flexibility. Furthermore, for three of the models a special implementation of mmap() has
been created to allow direct access to accelerator local memories and kernel DMA buffers from within
user applications.

5.2.1 User space buffers

Due to the existent library support and its widespread use, a simple method for accessing accelerator
resources from an application is to pass the operating system a pointer to a user space buffer via a
character device driver. The operating system can check the pointer to ensure it is a valid location and
then access the hardware resources as needed. The standard model for device driver interactions allows
for the user to provide the operating system kernel with a pointer to the application’s virtual address
space via calls such as ioctl(), read(), and write() system calls. A device driver model provides the
most abstract interface to the user space application. The user space buffer access method we develop
is very similar to the character device driver method; however, we implement our own system call, to
reduce the overhead associated with standard device driver system calls, and use it as a basis for our
various access methods. The flow of events in the user space buffer method is similar to the simple device
driver method and will not be repeated. While keeping most of the semantics of the simple device driver
model, we present how the user space buffer access method can be used and how it is implemented.

The user space buffer method allows the application to access the accelerator resources without
first setting up any sort of mapping or initializing any data structures internal to the operating system.
The application can generate a block of data in user space and hand it off to the operating system for
processing by the accelerator. The operating system is able to recognize that the application is using this
access method due to the system call accessed and the fact that there is no previously set up mapping
between the application and the accelerator resources, as is the case for the other models we will describe.

To access the accelerators in our simple model, the user generates a linear array of data and passes
a pointer to the data to the operating system which then takes the appropriate actions to move data
into the accelerator local memory. Figure 5.5 shows the user space buffer named buf and its location in
virtual memory. The pointer references any part of the application’s memory space that is allocated to
it either dynamically (e.g., using malloc()) or statically (e.g., a global array allocated on the program
stack). The physical location of the data is shown as “Buffer for Accelerator Input” in the figure. A
sequence of copies must be initiated by the operating system to move data from the user space buffer
into a DMA-enabled region of physical memory. Once in a DMA-enabled region, the data is transfered
to the accelerator local memory via DMA. The local memory of the accelerator is mapped into the
physical address space of the processor, but is not system memory, such as the DDR in our prototype
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Figure 5.5 Protected access mode data copy methods.

platform. Instead, the local memory of the accelerators can be any type of memory located anywhere
in the system, as long as it is physically addressable by the processor. We implement BRAM buffers,
internal to the framework, that are physically addressable by the processor and DMA controller.

The call semantics describe what the programmer needs to know about the operating system interface
that are necessary for correct program execution. Both blocking and nonblocking call semantics are
allowable using the direct access method. A blocking system call begins when the user calls into the
operating system at which point the kernel performs the request action immediately, or defers the
execution of the call while the calling application sleeps. A nonblocking system call returns immediately
informing the user of whether the access was performed without waiting; or it returns indicating that
the access would require the application to sleep; or it returns an error message if the call is invalid. We
extend the nonblocking model to defer execution of the accelerator by having the system call perform the
necessary protection checks, scheduling the application’s request, and returning. The aim of nonblocking
calls is to allow the operating system to handle the user request without the application waiting on the
result. For nonblocking calls, access to shared data must be protected by some form of synchronization.
The programmer must ensure that it does not manipulate any data used by the kernel call that is not
copied during the call by the operating system. Furthermore, the application must be careful to not
access any results of the nonblocking call until the deferred work inside the kernel has finished. Our
implementation uses only blocking system calls, for simplified semantics, such that when a call into
the kernel returns, all accelerator interactions have completed. However, future work could explore
nonblocking calls to increase concurrent execution on accelerators and the general-purpose processor.

User space buffers allow the operating system to check the permissions of the accessing application
by providing an explicit transfer of control between the application and the operating system, while
also isolating the accelerator resources from the user application. Furthermore, the operating system
can reallocate resources on a call-by-call basis due to the explicit call into the operating system on
every accelerator access. However, the user space buffer method also incurs added cost due to memory
copying, coherence actions, system call overhead, and sanity checks that must be conducted before the
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kernel can dereference a user space pointer. However, a further advantage of passing a user space pointer
is obviating the the need to set up a possibly costly mapping. An application need not perform any
initialization prior to accessing the accelerator if user space buffers are used. The user space buffer
model will now serve as the basis for more other access methods that provide better efficiency under
many circumstances, but maintain the same calling semantics as the user space buffer access method.

5.2.2 User mapped DMA

The purpose of user mapped DMA buffers is to avoid the extra copy shown in Figure 5.5 as a
red line between the user buffer and the DMA enabled buffer. User space buffers provide a simple
abstraction that is familiar to UNIX systems programmers. However, the extra copies required when
moving data from user space to a DMA enabled buffer incur added cost. The extra copies can be
rendered unnecessary by having the operating system map a DMA enabled buffer directly into the
user’s virtual address space. Previous work has shown that such direct mappings for fast message
passing in clustered environments [39] can improve performance dramatically by reducing the number of
unnecessary copies. The user mapped DMA mode of accelerator access still encapsulates the hardware
resources while providing faster access, at the cost of increased initialization time.

The user mapped DMA access method differs from the user space buffer method described in the
last section in that it must first set up a mapping, through a driver controlling the accelerator, prior to
use. The application sets up the necessary mapping by making a mmap() system call, created specifically
for this device driver. During the mapping call, the operating system allocates a DMA-enabled buffer
that will be mapped into the user space application. The buffer is pinned into memory, so that it cannot
be swapped out, and made present in physical memory. The mapping is inserted into the page tables of
the user application, enabling the proper address translation to occur between the virtually addressed
buffer, buf[] in the figure, and the DMA enabled buffer. The operating system sets up, and henceforth
maintains, a mapping between each application and the DMA-enabled buffer. When the user makes a
call to the accelerator, the coherence actions and DMA transfers can take place immediately, without a
need to copy from a user space buffer. The operating system is able to recognize what actions must occur
based on the previously recorded mapping. The decision box in the figure shows the operating system
performing the necessary actions to move data into the accelerator local memory. The accelerator can
then proceed and place the output in its local memory. The system call now reverses its previous actions
by performing a DMA transfer out of the accelerator local memory and back into the user mapped DMA
buffer, and then returns. Two copies are rendered unnecessary by using user mapped DMA buffers: both
when entering and exiting the call, no copy between a user space buffer and the DMA enabled buffer is
performed.

The user mapped DMA method saves an unnecessary copy from user to kernel space at the cost
of a mmap() system call; however, there are other implications for providing user applications with
direct mappings to DMA-enabled buffers. The operating system must now manage the allocation of a
possibly fixed amount of DMA capable memory among many applications. Flexibility may be gained
by allowing the DMA mapping to be removed by the operating system by marking the page not present
and flushing the TLB entries associated with the mapped page. A change must also be made to the page
fault handler to fault in a mapping when requested by a user, and possibly removing another pinned
mapping from another application. Our design does not implement shared DMA mappings, but for
architectures with limited DMA enabled regions, or fixed amounts of physical memory, such additions
can be considered. Furthermore, pinning a large amount of memory, especially for accelerators that
require large data transfers, is not an effective use of system resources and can reduce the operating
system’s ability to provide applications with the memory they need to execute. Performance would be
degraded, in a system with reduced available physical memory, if pages must begin being swapped in
and out of the few remaining free physical page frames. For future systems, where many applications
are accessing an assortment of accelerators, it will be necessary to develop more cooperative models for
DMA mapping access to the accelerators, but such models are not explored in this work.
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On the PPC platform, all physical memory is DMA-capable. The only restriction for allocating
buffers in our present model is the need to find a free area of physical memory that is large enough for
the DMA buffer and is contiguous. Another method for enabling noncontiguous DMA buffers would
require making use of the scatter-gather facilities of the DMA controller we employ. The DMA buffer
would be presented to the application as a contiguous region of virtual addresses; however, it would be a
scattered collection of physical pages mapped into a contiguous region. As none of the applications make
use of buffers larger than a page in size and our DMA controller implementation cannot support regions
larger than a page, scatter-gather DMA was not examined, but is available for future development.

Mapping DMA-enabled buffers directly into the virtual address space of applications allows those
applications to access the accelerators more efficiently. The system bus is more fully utilized by enabling
eight byte transfers every 10-ns bus cycle during a burst. However, efficient DMA transfers come
at the cost of overhead associated with setting up the DMA transfers. The setup costs may negate
the performance gains earned by using DMA as opposed to alternative access methods. For many
applications, however, the benefits of DMA-enabled access may outweigh any of the access method’s
shortcomings. With the mapped DMA buffer method we are able to take advantage of the benefits
of DMA, but with reduced cost compared with the user space buffer method, while only incurring the
one-time setup cost of the buffer mapping.

5.2.3 Direct access

Direct access refers to the operating system, at the request of an application, mapping the local
memories of the accelerators directly into the virtual address space of the application. Both cacheable
and noncacheable mappings are possible. The two direct access methods can provide a high level of
protection and can allow resources to be virtualized, while also removing the need to perform possibly
costly DMA setup routines. A setup cost to initialize the mapping must be paid, however, making direct
access less attractive for certain applications. The direct access method for accessing accelerators, and
its implementation on our prototype, is now discussed.

Direct access is instrumented by providing the driver interface with an mmap() system call that maps
the physical address range of the accelerator memory into the virtual address space of the application.
The mmap() call uses ioremap() to setup the necessary page tables and then inserts those page tables
into the virtual memory area (VMA) of the calling application. The buffer used by the application is
still the same as the user space buffer, named buf[], shown in Figure 5.5. However, now the buffer maps
directly to the local memories of the accelerator, bypassing the two other buffers in physical memory
shown in the figure. Instead of writing to system memory, data generated by the application is transfered
directly to the local memory of the accelerator. When the operating system is called, using the same
model as with the other access methods, the operating system takes the necessary actions, starts the
accelerators, and returns to the application when the output is available. Since the accelerator buffer is
mapped directly into the user application, no explicit transfer of data must take place before returning
to the application.

To implement direct mappings, two methods are possible: the page table entries can either be marked
cacheable or noncacheable. If the entries are marked as noncacheable, then every time the application
accesses the accelerator with a load or store instruction, the processor must write out to the memory.
By forcing a write on every access, the processor write buffer fills quickly as it cannot flush data to the
cache, but must make high latency transfers all the way out to memory for each access. Eventually the
processor will stall, reducing performance. However, marking the mapping as noncacheable removes the
need to perform an explicit cache line flush for the regions in the mapping. If a cacheable mapping is
allowed, the inefficiency of noncacheable access is mitigated.

The mapping from virtual addresses used by the application to the physical addresses used by an
I/O device are normally marked noncacheable. By making the mapping cacheable, the accelerator can
take advantage of cache line transfers that allow for better bus utilization, fewer stalls due to write buffer
blocking, and possibly overlapping cache line flushes with computation. However, marking the mappings
as cacheable requires explicit cache flushes that may take many cycles. Depending on the application’s
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buffer sizes and data production rate, one method may be favored over the other. The discussion of
which method is appropriate for a given data set is left to the next chapter.

Direct mapping makes the accelerator resources more visible to the user application at the cost of
reduced abstraction. The interface provided by all the methods so far remains unchanged in the direct
mapped method, as the application must still call into the kernel to enable the transaction with the
accelerators to proceed. If the direct access method were taken to an extreme, by making all accelerator
resources available, nearly all abstraction would be lost. However, the operating system could implement
a model similar to Exokernel [40]. In doing so, the whole accelerator platform would be virtualized, giving
each application the illusion of having direct access to the device. The loss of abstraction at the system
call level breaks the transparent model and therefore is not explored in this work, but remains as an
avenue for future work.

Direct mapping provides an alternative to the user space buffer and user mapped DMA buffer
methods. Mapping the accelerator resources directly into the application’s virtual address space allows
all extraneous copies to be removed. The uncacheable version of the method removes the need to perform
coherence actions as well and results in the lowest possible overhead per memory access. However, word-
by-word transfers may cause unnecessary stalling of the processor. Cacheable direct mapping provides an
alternative that allows for faster, cacheable transfers at the cost of explicit cache management instructions
being needed when performing the system call to initiate an accelerator transaction. One restriction
placed on direct mapping, in either cacheable or uncachable form, is the requirement that there be a
one-to-one mapping between accelerator buffers and applications. If preemption is allowed, there must
be a means to save the state of the buffers on an accelerator context switch and restore that state when
the preempted application becomes runnable once again. Our work does not implement mechanisms
that allow for multiple accessors, using the direct access model, and is left for future work.

5.3 Summary

The hybrid CPU/accelerator platform described in this chapter provides a rich set of choices for
system-to-accelerator interfaces. The character device driver model represents a well-understood method
for accessing hardware resources. The model was used as the basis for the application-to-accelerator
framework interfaces. However, the character device driver method for accelerator access performs
unneeded protection checks, requires added maintenance of kernel data structures, and requires more
calls than are necessary for accessing hardware accelerators. A set of methods that deviate from the pure
character device driver method have been described and compared. Each method represents a node in the
design space exploring the tradeoffs between setup overhead, accelerator access, level of virtualization,
and data transfer overhead. All methods provide a means to access the hardware accelerators, mapped
into the accelerator framework via a common interface, while maintaining protection boundaries.
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CHAPTER 6

EXPERIMENTS

Experiments were conducted to determine the performance of the different interface models presented
in the previous chapter. The cacheable direct mapped method is found to be optimal for JPEG encoding,
but not necessarily for all applications. We show that for a low number of accesses, the user space buffer
method proves to be the optimal choice by avoiding the costly overhead of initialization. The other
three access methods prove optimal over a range of data set sizes, where the initialization cost can be
amortized over the lifetime of the application.

We present the different methods we employ for quantitatively measuring the performance of the
operating system, example application, and reconfigurable accelerators using our CPU/FPGA prototype
platform. The issues associated with these methods are discussed and their use in this work is noted.
Performance results are presented for platform-specific operations, required operating system calls, and
all phases of the system calls and data transfer time necessary for accessing the accelerator framework.
The space requirements of the interconnect relative to accelerators in our model platform are given. A
brief summary of the relative merits of each access model concludes the chapter.

6.1 Methodology

All hardware accelerator experiments were conducted using the XUP Board platform, with Linux
2.4 running on one of the PowerPC cores embedded in the FPGA. The performance of the experiments
was measured by one of three methods: the Linux time application, the gettimeofday() system call, or
by reading the timebase for the PowerPC processor.

The time utility calls the Linux system call times, which returns a kernel generated structure listing
the application’s time usage in terms of system ticks. A tick on the PowerPC405 occurs every 10 ms,
causing it to have the poorest resolution of the three methods used. The gettimeofday() system call on
the PowerPC405 running Linux 2.4 includes the overhead of the system call, which is on the order of a
microsecond. For full application measurements, gettimeofday() was used instead of the time application.

All fine-grained measurements, and all measurements made inside the kernel, were performed using
the 64-bit PowerPC405 timebase. The timebase is split into upper and lower 32-bit registers. The
timebase lower register increments every cycle while the timebase upper register increments every time
the lower register overflows. At 300 MHz, the timebase lower register overflows approximately every 14 s.
The execution of a mftbl instruction takes approximately three processor cycles to execute, causing each
read to incur approximately 10 ns of overhead. To ensure completion of any outstanding instructions prior
to making a measurement, synchronization instructions are inserted prior to all timebase measurements.

Application profiling was used to determine the relative portion of time spent in each phase of the
computation. The GNU profiler was used for all profiler analysis in this work. Profile data returned by
gprof is stochastic and the sample rate is limited by the operating system and the system architecture.
As such, profiling results are not used for fine-grained measurements. However, profiling is an invaluable
tool when determining the appropriateness of a portion of software for implementation as a hardware
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Figure 6.1 Comparison of average DCT and Quant execution time for cjpeg compressing a 1.4-MB
bitmap using standard JPEG.

accelerator. Coupled with the results presented for our interface methods in this chapter, a system
designer can make use of the techniques listed above to partition his design to achieve desired results.

6.2 Results

Various data transfer methods are available for application designers to choose from. The choice
of transfer method depends on the required call semantics, transfer latency, transfer size, and number
of transactions per use. Furthermore, speed, overhead, and FPGA area implications of each transfer
method must be understood to develop accelerators that provide gains in performance, cost, and energy
efficiency. Our results provide insight into what tradeoffs must be made when developing accelerators
for applications running in a hybrid CPU/FPGA environment.

6.2.1 Performance

We will look at application performance in terms of time to execute a single call to the accelerator
framework. For our test application JPEG, one access to the framework constitutes a single, 128-
byte macroblock being processed. Figure 6.1 shows the results of profiling done on the JPEG encoder
application for two different x86 machines and our test platform using the simple device driver interface
method. We provide these results to show the large speedup possible when using hardware accelerators
that can easily be hindered by the large overheads associated with accessing these accelerators. The
speedup of the quantization and DCT accelerator combination, running at 100 MHz, is faster than
both x86 machines running at an order of magnitude higher clock frequencies and is 8.4x compared
to the PowerPC software-only implementation. However, once the call and data transfer overhead is
accounted for, the CPU/accelerator model is slower than the x86 machines and only 1.5x faster than
the PowerPC software-only version. We will now deconstruct the accelerator access time and show the
speedups provided by our alternative access methods.

There are many components that contribute to the time required to do an FPGA accelerated com-
putation. There are startup costs associated with access methods. There are overheads from going into
the kernel and performing the added resource allocation. Protection checks add to the time a call takes
to complete. There is time spent moving data to and from the accelerator, from system memory, or the
processor cache. This section illustrates system-level effects of using system call library-like interfaces
to reconfigurable accelerators. Future work can develop hardware accelerated applications and the as-
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Figure 6.2 Accelerator access breakdown across four access modes.

sociated infrastructure, using our framework and results, that will break away from the present state of
accelerated applications that require embarrassing levels of parallelism and provide little protection.

6.2.2 Accelerator access cost

Four access methods were described in the last chapter: user space buffers (standard method), user
mapped DMA buffers, cacheable direct mapping, and uncacheable direct mapping. To test these meth-
ods, the JPEG encoder was implemented to use the accelerator framework with DCT and quantization.
Each access to DCT and quantization in software was replaced by a system call to access the hardware
accelerators, and the performance measured. We find that the direct cacheable method provides the
best speedup for the hardware-accelerated version of JPEG encoding. The access cost of each method
for a set of data set sizes is also provided to enable developers to choose the appropriate access method
based on their application’s needs.

During JPEG encoding, each macroblock must be transformed and quantized. In our experiments,
a 1.4-MB test bitmap image is used and requires 11 900 calls to the accelerator. For each method used,
the time spent filling buffers and executing each call was independently measured using the timebase
while encoding our test image. Due to the large number of accelerator accesses for JPEG, startup costs
are easily amortized, and are therefore not considered in our per-call experiments. However, startup
costs are described in further detail in the the next section. Figure 6.2 compares the time spent in each
part of the accelerator call for the four methods.

Figure 6.2 shows the cost of system call overhead is not the main factor in determining the perfor-
mance of the JPEG accelerator calls. A great deal of time is spent transferring data and performing the
actions necessary to maintain coherence and set up the transfers. From the figure it is clear that finding
low-latency, high-throughput methods for getting data into accelerators is key to extracting the full
potential of hardware accelerators. Another point to be made about the figure is the optimal case being
the cacheable direct mapping. Even though cacheable direct mapping requires more time to transfer
data to the accelerator local memory than both of the DMA methods, it provides the greatest speed due
to not requiring costly DMA setup time and the additional cost of a DMA transfer on top of a buffer
being filled.

If an application developer were to develop an application with similar data transfer characteristics
to JPEG, the application accelerated in our experiments, the cacheable direct mapping method would be
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Figure 6.3 Cycles required for the four access methods with varying transfer sizes without the cost of
the initial mappings factored in.

the best choice. However, applications have vastly different requirements in terms of number of accesses,
sizes of data transfers, and hardware accelerator execution time. To provide more general results, we
have timed each of our methods for different data transfer sizes. Figure 6.3 depicts the call time, in
cycles, for data transfer sizes ranging from 4 bytes to 512 bytes, in 4-byte increments. To include all the
overhead associated with each call, we time the following: data copies to temporary buffers, system call
overhead, DMA setup and transfers (if required), cache coherence actions (if required), and data copies
from temporary buffers. No accelerator execution is included in the timing measurements.

There are three distinct phases in our data transfer characterization, highlighted in Figure 6.3.
Uncacheable direct mapping is the fastest access method, from 0 bytes to 16 bytes, due to its non-
existent startup cost and lack of explicit cache flushes. However, the cached direct mapped method is
the optimal method for transfer sizes of 20 bytes to 160 bytes. The low utilization of the bus causes the
cached direct mapping to overtake the uncached version. The 32-byte cache line size has some effect on
the smoothness of the curve, with the cached direct mapping showing inflection points at each 32-byte
interval.

For applications with large transfer sizes, that can bear the cost of setting up a DMA-capable buffer,
user mapped DMA method is the best choice. Above transfer sizes of 160 bytes, the overhead of setting
up DMA transfers is overtaken by the higher bus utilization of DMA-based transfers. The user space
buffer method, which also employs DMA but requires the cost of an extra copy from user space buffers
to DMA-capable regions inside the accelerator system call, is never optimal when comparing just the
transfer cost. However, as discussed in the next section, startup costs render the other three methods less
effective for low numbers of accelerator calls, due to the high overhead required for setting up mappings.
Lastly, the jaggedness of the curves for two DMA methods is due to the reduced efficiency of bus transfers
that are less than the bus width of 64 bits. Due to the DMA controller we employ, any transfer that is
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Table 6.1 Mapping overhead for user DMA and both cacheable and noncacheable direct mapping.

Call Overhead
Average Case First Access

Call Cycles Time (µs) Cycles Time (µs)
open() 14 381 47.94 34 472 114.8
mmap() 8 422 28.01 24 487 81.62
munmap() 7 357 24.52 14 467 48.22
close() 4 509 15.03 9 581 31.94
Total 34 699 115.5 83 007 276.7

not a multiple of 8 bytes will require a separate transfer, resulting in reduced performance for such data
transfer sizes.

Using the results presented in this section, an access method can be chosen to match an application
based on the data set size. The values provided in this section are only for accelerators that can easily
amortize the startup cost over a large number of accesses. For those accelerators that cannot, the next
section will provide the needed insight that, when coupled with the data presented in this section, will
allow for the proper choice of access method for a given application.

6.2.3 Accelerator startup cost

The times spent executing system calls necessary to initialize the mappings and set up DMA buffers
in our model are presented in Table 6.1. The applications we study that are amenable to hardware
acceleration either access accelerators repeatedly (e.g., JPEG), or are long running (e.g., filtered back-
projection). The startup costs can be nontrivial, as is shown in the table by the first access times. The
JPEG accelerators are able to amortize the cost of a possibly long initialization process. In cases where
the time spent setting up the accelerator is trivial compared to the time spent accessing the accelerators,
only the access cost need be examined. For more fined-grained, or less often accessed accelerators,
the negative effects of startup and access cost must be mitigated to achieve an optimal system design.
Experimental results show that the cost of setting up the mappings required for user-level DMA buffers
and direct access are listed in Table 6.1. All of the methods presented require these calls to be made
once during the application’s execution, except for the user space buffer method that requires no setup
prior to use. Both average (best) case and first access results are given. The slowdown for first access
to the system calls necessary to set up a mapping can be attributed to the cost of cache misses and
TLB misses. When an application first accesses the accelerator by calling open(), or uses mmap() to
set up mappings between operating system controlled resources and the application, the areas of kernel
memory where those instructions and the associated data reside are likely not in the CPU caches and
may not have a mapping in the TLB. The side effect of not having the instructions in the cache is added
latency for the call. A TLB miss on the PowerPC requires operating system intervention, and can waste
many hundreds of cycles. Ways to avoid the high cost of startup may be developed to enable better use
of startup-sensitive accelerators.

Future architectures could make use of special calls to reduce the overhead associated with setting up
the access methods we describe. One example is pinned mappings that would enable average case system
call overhead to revert toward the best case by removing TLB miss overhead. However, performance
elsewhere may suffer with fewer TLB entries available. Furthermore, doing so many not be possible
in other architectures that, unlike the PPC405, do not provide software management of the TLB. The
opportunity to improve startup is immense. As our results show, setting up such mappings may add as
much as 276 µs to the accelerator total access cost just for setting up and tearing down the mappings.
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Figure 6.4 FPGA area utilization on the XUP Board’s VP30 and the VP70 for comparison.

6.2.4 Area utilization

Figure 6.4 shows the free resources left on the FPGA after instantiating the processor support logic
and the accelerator framework. The VP30 is one of the smaller FPGAs in the Virtex-II Pro product
line, but there is space remaining for multiple accelerator blocks for processing independent macroblocks.
Some additions to the control logic could allow for parallel access to the local store and the ability to
feed multiple pipelines. However, as shown earlier, the throughput of the system bus is limited. If each
accelerator were allowed to process data at full speed, 2 bytes per accelerator would be consumed every
bus cycle. Optimistically, the accelerators would become I/O limited at fewer than two pipelines using
a 100-MHz PLB. Therefore, area is not a major concern for our platform, but the available throughput
of the interconnects and the processor’s ability to provide input data should be considered more critical
when developing similar, future systems.

6.3 Summary

In this chapter, we have presented results for our framework, based on our JPEG encoder example.
Furthermore, we have characterized the setup, access, and area costs of our interfaces and prototype
framework. User space buffers that are passed to the kernel have the largest per call cost, but require
no setup. For a short running accelerator, the user space buffer approach is desirable. The price that is
paid for a low per-call cost is the need to set up a mapping. If the accelerator is accessed enough times
to amortize the cost of the initialization across the time saved by setting up such a mapping, then DMA
or direct mappings are ideal. For our test application, JPEG encoding, we find that cacheable direct
mappings are the optimal choice for our platform.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

A hybrid CPU/accelerator computer system model is presented that is capable of running common
applications on a real hardware platform. The goal set for the project was to develop and characterize a
system in which common applications could be accelerated using reconfigurable hardware accelerators.
The hybrid model allows for more efficient, faster computation while maintaining the protection bound-
aries within the system. Two major contributions are described here. First, we present a framework that
allows hardware developers to map their accelerators into our hybrid CPU/accelerator system model.
It allows the hardware developer to do so without worrying about how an applications developer will
interface with the accelerator. Second, we present a set of interfaces that can be used by applications
developers to access hardware accelerators without concern for how they are implemented, or if the hard-
ware resources are even available. The computation model we discuss provides the logical abstractions
necessary for integrating our interfaces and accelerator framework into a contemporary, general-purpose
computing environment.

The interfaces developed abstract away the details of the framework, and decouple the accelerator
development from the application development. Skilled applications developers can continue to develop
high-quality applications while utilizing hardware accelerators, much as they are accustomed to utilizing
shared libraries today. Skilled hardware developers can continue produce high quality accelerators that
can now be seamlessly integrated with a general-purpose operating system. Our contributions provide a
basis for future development of heterogeneous systems that wed FPGA-based accelerators and general-
purpose microprocessors by building a set of interfaces for both accelerators on one end, and applications
on the other, that can communicate effectively using our computation model as a basis for the connections
between the two.

7.2 Future Work

We present a platform for future hybrid CPU/accelerator systems. Moreover, the platform developed
here demonstrates the viability of our heterogeneous computing model by providing a real working
prototype. However, our model and framework are only the beginning; many tools still must be developed
and parts of our model refined.

Independent transactions are unnecessarily serialized and could take advantage of multiple parallel
pipelines. Even though the processing of a single block is fully pipelined between the accelerator local
store and the DCT/quantizer, the parallelism inherent in the code is not fully exploited.

The ultimate goal of this project is to allow a developer to take an application and map it into a
hybrid CPU/FPGA platform seamlessly. To do so requires compiler tools, with possible annotations in
the code, that allow for the heavily used, data-parallel kernels of an arbitrary application to be extracted
from the source. Once extracted, data-parallel kernels of code must be mapped into reconfigurable logic.
The reconfigurable accelerators can be integrated with the system using our accelerator framework. The

53



application can access the accelerator through a library-like interface that is managed by the operating
system. The user need not worry about the size or availability of reconfigurable resources. The operating
system loads the accelerator into hardware or into memory as a normal shared library depending on the
system resources available. In the case of software execution, resources are virtualized by the operating
system, leaving the calling semantics intact.

Efforts exist to provide mappings from high-level languages, such as C, into hardware description
languages, such as VHDL or Verilog. Porting these tools into our framework is one step necessary
for enabling widespread use of the CPU/accelerator model developed here. Tools to address the hard
problem of taking general program code written in a high-level language and finding appropriate sections
to map into our platform must be developed for seamless integration to be possible.

Our framework could be further developed to provide more autonomy to the accelerator framework.
A small degree of unnecessary latency is experienced when performing operating system to accelerator
transactions. The latency is the product of the CPU accessing the DMA controller exclusively. If the
accelerator framework were allowed to access the DMA controller directly, instead of the CPU, the
accelerator could be provided with all the necessary information to complete a single transaction at the
transaction’s start, and then allowed to run to completion, obviating the need for CPU intervention. For
larger data transfers, and future implementations where concurrent software and hardware threads are
executing, the longer runtime of accelerators, without CPU intervention, could be exploited.
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